Tag Archives: quizzini

Risposte ai problemini per Pasqua 2020

Siete rimasti bloccati con i problemini? Nema problema, solo soluzioni!

1. Moltiplicazioni in catena
Cominciamo a vedere che non possono esserci due cifre dispari consecutive nella lista. Se ci fossero, possiamo prendere le prime due che appaiono. Ma come possono essere state aggiunte alla lista? Se fossero il prodotto di due altre cifre precedenti, anch’esse devono essere dispari; se la prima fosse l’ultima cifra di un prodotto e la seconda la prima di un altro prodotto, comunque il primo prodotto dovrebbe essere di due cifre dispari. In ogni caso la nostra ipotesi di aver scelto la prima coppia di cifre dispari è errata.
Questo però significa che ogni cifra dispari che troviamo è la prima cifra di un prodotto; quindi il 9 non potrà mai esserci perché il prodotto di due numeri di una cifra è sempre inferiore a 90; il 7 non potrà mai esserci perché l’unico prodotto di due numeri di una cifra che cominci per 7 è 9·8=72 ma il 9 non si trova nella lista; il 5 non può esserci perché gli unici prodotti di due numeri di una cifra che comincino per 5 sono 6·9=54 e 7·8=56 e né 7 né 9 sono presenti; lo 0 non può esserci perché il primo zero nella lista deve essere il prodotto di un 5 per un numero pari, e non ci sono 5.

2. Tocca non ripetersi
Innanzitutto, costruendo la lista si troveranno a un certo punto tre 8 consecutivi. Essi genereranno la successione 6, 4, 6, 4 che a sua volta genera 2, 4, 2, 4, 2, 4 che genera 8, 8, 8, 8, 8. Similmente i cinque 8 consecutivi ne generano 13, e in genere k 8 consecutivi ne generano 4*k−7. Poiché il numero di 8 consecutivi continua a crescere, la lista non può essere periodica.

3. Non proprio Fermat
Poiché è facile vedere che xy, possiamo supporre senza perdita di generalità che x < y < z. Spostando il termina yn al secondo membro e fattorizzando, abbiamo che xn = (zy)(zn−1+yzn−2+…+yn−1) ≥ 1+nxn−1 > xn, che è assurdo.

4. Un numero irrazionale
Per la regola di Ruffini, una soluzione razionale di un’equazione polinomiale a coefficienti interi è della forma p/q, dove p è un fattore del termine noto e q un fattore del coefficiente del termine di grado più elevato. In questo caso questo coefficiente è 1, quindi le soluzioni razionali devono essere intere, il che è impossibile.

5. Distanziamento
Per la prima parte, supponiamo che esista un poligono ABC…MN. Possiamo supporre senza perdita di generalità che NA < AB. Ma allora dev’essere AB < BC, perché B non è il punto più vicino ad A. Similmente, BC < CD e così via, fino a MN < NA. Mettendo insieme tutta questa catena, abbiamo che AB < NA, il che contraddice l’ipotesi.
avviciniamoci
Per la seconda parte, supponiamo che come in figura il punto B sia il più vicino ad A, e il punto D sia il più vicino a C. Allora per definizione AD > AB e CB > CD. Ma allora AD + CB > AB + CD = AO + OB + CO + OD, il che è impossibile perché AD < AO + OD e BC < BO + OC.

Problemini per Pasqua 2020

Vorrete mica che un banale coronavirus blocchi la tradizione dei problemini pasquali? Anzi, tanto a Pasquetta la gita fuori porta non la possiamo fare, quindi tanto vale cimentarsi nella risoluzione. La fonte stavolta è il libro di Hugo Steinhaus One Hundred Problems in Elementary Mathematics.

1. Moltiplicazioni in catena
Partite con i numeri 2 e 3 affiancati, e moltiplicateli tra loro: otteniamo 6. Aggiungete 6 alla (ancora breve) lista, lasciate da parte il 2 che è il primo numero a sinistra, e moltiplicate 3 per 6, ottenendo 18. Aggiungete alla lista 1 e 8 e lasciate da parte il 3. I primi due numeri rimasti sono 6 e 1, che moltiplicati fanno 6; lo aggiungete alla lista lasciando da parte l’8. Andando avanti, costruirete una lista infinita che comincia con 2, 3, 6, 1, 8, 6, 8, 4, 8, … Dimostrate che questa lista non conterrà mai le cifre 0, 5, 7, 9.

2. Tocca non ripetersi
Riprendete la lista infinita del problema precedente; dimostrate che non diventerà mai periodica.

3. Non proprio Fermat
Dimostrate che l’equazione xn + yn = zn non ha soluzioni intere positive se nz.
x^n+y^n=z^n

4. Un numero irrazionale
È vero che in genere non si può risolvere un’equazione per radicali; però qualcosa si può comunque dire. Per esempio, l’equazione x5+x=10 ha una sola soluzione positiva che è compresa tra 1,5 e 1,6. Dimostrate che questa soluzione non è un numero intero.
x^5+x=10

5. Distanziamento
Immaginate di avere un certo numero di punti nel piano, e che tutte distanze tra due di questi punti sono diverse tra loro. Collegate ora ciascun punto a quello più vicino con un segmento. Il grafo che otterrete non è necessariamente connesso; dimostrate però che non può contenere un poligono chiuso oppure due archi che si incrociano.
tanti punti

Soluzioni dei problemini per Natale 2019

Siete riusciti a trovare da soli le soluzioni ai problemini? Sennò non preoccupatevi: eccole qua 🙂

1. 2020 in tono minore
Il numero più piccolo che si può ottenere è 2×(0−20)=−40. Il numero -2020 non è valido perché il meno iniziale è unario e non un simbolo di operazione.
(problema mio)

2. Da 1 a 10
Una risposta possibile è 12×34×5-6-7-8-9+10. Altre possibilità:
123+45×6×7+8+9-10
12+34×5×6+78+910
1*2×34×5×6+7-8-9-10
1×23×45+67+8+910
12×34×5+6×7-8×9+10

(problema mio)

3. Alla radice
Scrivete innanzitutto il primo addendo come 1/(√1 + √2) per simmetria. A questo punto, togliamo le radici quadrate dal termine generico 1/(√n + √(n+1)), moltiplicando numeratore e denominatore per 1/(√(n+1) − √n). Otteniamo (√(n+1) − √n)/(n+1 − n) = √(n+1) − √n. Dunquetutti i termini della somma si eliminano tra loro tranne il primo e l’ultimo, e la risposta è √2020 − 1.
(problema adattato da Mind Your Decisions; immagine creata con LaTeX Equation Editor)

4. Iterazioni
Indicando per comodità con fn() la funzione f iterata n volte, abbiamo che f(3)=−2; f2(3)=−1/3; f3(3)=1/2; f4(3)=3. Quindi dopo quattro iterazioni la funzione torna ad avere il valore iniziale; essendo 2020 un multiplo di 4, f2020(3)=3.
(problema adattato da Math StackExchange; immagine creata con LaTeX Equation Editor)

5. Soldi
Guardiamo il problema alla rovescia. Se ci fosse un solo studente, dovrebbe avere zero monete. In generale, qualunque sia il numero di studenti, occorre per forza che ce ne sia almeno uno con zero monete, perché altrimenti tutti gli scambi sarebbero con persone che hanno almeno una moneta ciascuno prima; quindi mettendo insieme le loro monete ne avrebbero almeno due, e dividendole continuerebbero ad averne almeno una. Quindi se gli studenti fossero due il numero massimo di monete che può essere presente inizialmente è uno. Che succede con tre studenti? Ovviamente potrebbero avere rispettivamente 0, 1, 1 monete; ma si può arrivare a quella configurazione partendo da 0, 0, 3 monete e facendo una condivisione tra il secondo e il terzo studente. Non possono esserci più monete, perché altrimenti lasciando da parte il primo studente ci sarebbero almeno quattro monete che una volta divise danno almeno due monete a testa, e abbiamo visto che un solo studente con zero monete non permette di eliminarle tutto. Andando avanti allo stesso modo, troviamo che con quattro studenti la configurazione con il maggior numero di monete totali le vede divise 0, 0, 0, 7; con cinque studenti 0, 0, 0, 0, 15; in generale con n studenti 0, 0, … , 0, 2n−1−1. Poiché 2020<2047, si ha che il numero minimo di studenti presenti è 12.
(problema adattato da Math StackExchange; immagine da FreeSVG)

Problemini per Natale 2019

È Natale, tornano i problemini… e quest’anno tornano quelli relativi al numero che corrisponde all’anno prossimo, con la soluzione che verrà postata, assieme alle fonti per i problemi e per le soluzioni, il 31 dicembre; in questo modo potete forse evitare la solita tombola 🙂 Attenzione! L’ultimo problema non è facilissimo.

1. 2020 in tono minore
Qual è il numero più grande che potete ottenere se prendete le cifre 2020 e senza cambiarne l’ordine aggiungete a piacere le quattro operazioni aritmetiche di base, spazi e parentesi? Beh, è 2020. Se fosse permesso l’elevamento a potenza avremmo 2020, ma niente da fare. E qual è invece il numero più piccolo che potete ottenere?

2. Da 1 a 10
Partite dalla lista 1 2 3 4 5 6 7 8 9 10 e inserite a piacere i simboli delle quattro operazioni oppure parentesi per comporre un’operazione che vi faccia ottenere 2020. Non siete obbligati a mettere simboli ovunque: se volete partire con 1234 o finire con 910, va benissimo.

3. Alla radice
Quanto vale la somma qui raffigurata?
1/(1 + √2) + 1/(√2 + √3) + ... + 1/(√2019 + √2020)

4. Iterazioni
È data la funzione f(x) = (1+x)/(1−x). Qual è il valore dell’espressione qui sotto, dove la graffa significa che ci sono 2020 iterazioni della funzione f?

5. Soldi
Al corso di Economia della Condivisione, 2020 monete vengono divise in un certo modo tra gli studenti, e si chiede loro di scambiarsele secondo questa regola: quando due studenti si incontrano, mettono insieme le loro monete e se le dividono in parti uguali, mettendone una nella Cassa della Classe nel caso il totale sia dispari. Dopo (tanti…) scambi, gli studenti scoprono che tutte le monete sono finite nella Cassa. Qual è il numero minimo possibile di studenti nella classe perché ciò possa avvenire?

Risposte ai problemini per Ferragosto 2019

Come per Pasqua, anche stavolta ho preso i problemini da The Ultimate Mathematical Challenge: sono rispettivamente i numeri 170, 171, 172, 174 e 175.

1. Trapezio
indicati gli angoli
Il triangolo JOK è equilatero, quindi i suoi angoli sono di 60°. Il triangolo JOM è isoscele in O, quindi gli angoli JMO e OJM hanno lo stesso valore x. Similmente i triangoli KLO e OLM sono isosceli, quindi gli angoli LKO, LOK, LOM, LMO hanno lo stesso valore y, e pertanto gli angoli OLM e OLK valgono 180°−2y. A questo punto sappiamo che in un trapezio gli angoli relativi ai lati obliqui sono supplementari (la loro somma è 180°); dagli angoli JKL e KLM abbiamo che y=80°, e dagli angoli KJM e JML ricaviamo infine che JMO=20°.

2. Tre su quattro
Se sommate tutti e quattro i risultati, ogni numero sarà stato contato tre volte. Poiché la somma è 618, la somma dei quattro numeri iniziali è 206; sottraendo la minore delle quattro somme, cioè 115, ricaviamo che il numero maggiore è 91.

3. La tavola rotonda
Poiché nessuna ragazza è vicina a Walter, i suoi vicini sono Vincenzo e Zeno; inoltre Yolanda è vicina a Vincenzo, quindi l’ordine (ciclico) dei posti è VWZXY. Sempre dall’affermazione relativa a Vincenzo, sappiamo che Walter è di Domodossola. L’aostana deve pertanto essere Xenia, e quindi Yolanda è di Enna. Il cagliaritano non può essere Zeno, pertanto è Vincenzo, e Zeno deve essere di Belluno.

4. Non solo biciclette
Eliminiamo una ruota per ogni sella. Rimaniamo così con sei ruote per sette mezzi: i tricicli (che hanno perso una ruota nell’operazione) potrebbero essere uno oppure due, ma in quest’ultimo caso le biciclette sarebbero anch’esse due, cosa vietata dalle ipotesi. Pertanto c’è un triciclo e quattro biciclette, mentre i monocicli sono i due mezzi restanti.

5. Gara a quiz
Ci sarà un numero x di problemi risolti da entrambe le ragazze, che contano per cinque punti cadauno, e un numero 2×(60−x) di probemi risolti da una sola ragazza, che contano per quattro punti. Sapendo che il punteggio totale è 312 punti, si ottiene x=56.

Problemini per Ferragosto 2019

Siete pronti a risolvere questi (facili…) problemini? Come sempre, tra una settimana ci sarà la risposta.

1. Trapezio
Nella figura qui sotto, i lati JK e ML sono paralleli; inoltre i segmenti JK, oK, Jo, MO sono tutti uguali tra loro, come lo sono KL, OL, ML. Quanto misura l’angolo JMO?
il trapezio

2. Tre su quattro
Genoveffa ha scritto quattro numeri (interi positivi) su un foglio. Se ne sceglie tre di essi e li somma, può ottenere come risultato 115, 153, 169 oppure 181. Qual è il più grande tra i quattro numeri?
115, 153, 169, 181

3. La tavola rotonda
Cinque ragazzi – tre maschi: Vincenzo, Walter, Zeno, e due femmine: Xenia e Yolanda – sono seduti a un tavolo rotondo. Ciascuno di loro proviene da una città diversa: Aosta, Belluno, Cagliari, Domodossola ed Enna. L’aostano è seduto tra Zeno e l’ennese; né Xenia né Yolanda sono vicine a Walter; Vincenzo siede tra Yolanda e l’ossolano; Zeno sta parlando con il cagliaritano. Di quale città sono i ragazzi?
tavola rotonda
(Immagine originale di joelma moraes, da UIHere.com)

4. Non solo biciclette
Nel negozio ENNEciclette sono esposte biciclette, tricicli e monocicli. Nicoletta conta sette selle e tredici ruote: inoltre ci sono più biciclette che tricicli. Quanti sono i monocicli?
monociclo
(Immagine da clipart-library.com)

5. Gara a quiz
Lucilla e Mirella fanno una gara a chi risolve più quiz: ce ne sono 100, chi ne risolve uno per prima ottiene quattro punti, la seconda uno solo, e naturalmente chi non lo risolve non prende nessun punto. Entrambe le ragazze risolvono 60 quiz – non necessariamente gli stessi – e in tutto ottengono 312 punti. Quanti problemi hanno risolto entrambe?
risposta esatta!

Risposte ai problemini per Pasqua 2019

So che aspettavate con ansia le risposte: eccole qua! (Se invece vi siete collegati solo adesso, forse conviene che prima leggiate le domande…)

Somma ridotta
Se Adamo avesse tolto una cifra diversa dall’ultima, la somma dei due numeri sarebbe dovuta essere pari. Non essendolo, sappiamo che è stata tolta l’ultima e quindi la somma è abcde+abcd = 11×abcd+e. Dividendo 52713 per 11 otteniamo 4792 con resto 1; quindi il numero di partenza è 49721 che ha 23 come somma delle cifre.

La strada verso 1000
Scriviamo esplicitamente i primi termini della serie: 1, n, 1+n, 2(1+n), 4(1+n), …; insomma il termine generale è della forma 2k(1+n). Poichè 1000 si fattorizza come 23·125; abbiamo che la successione più lunga avrà 1+n=125 e quindi n=124.

Giornata dello Sport nel Paese delle Meraviglie
Innanzitutto notiamo che sono stati assegnati 35 punti, cioè 5×7 (più eventuali fattori 1 che non contano perché ci sono state almeno due gare); quindi o ci sono state 5 gare con assegnati 7 punti o 7 gare con 5 punti assegnati. Ma poiché il numero minimo di punti assegnabili in una gara è 6 (3-2-1) quest’ultima ipotesi è da escludere. Abbiamo pertanto 5 gare, nelle quali si assegnano 4-2-1 punti. La Lepre Marzolina ha ottenuto 4 punti nella corsa nei sacchi, quindi è arrivata sempre ultima nelle altre gare, compresa la corsa col cucchiaio. (Per la cronaca, Alice è arrivata seconda nella corsa nei sacchi e ha vinto tutte le altre gare; la Falsa Tartaruga è sempre arrivata seconda tranne che nella corsa nei sacchi.)

Alta divisibilità
Per prima cosa, visto che il numero è divisibile per 10 allora b deve essere 0 e quindi esso è della forma a0ca0c000, cioè 1000 × 1001 × a0c. Ma 1001 è 7×11×13 e 1000 è multiplo di 8. Restano quindi da considerare solo i fattori 9, 16 e 17. Per 16, occorre che c sia una cifra pari; per 9, che 2(a+c) sia multiplo di 9 e quindi che lo sia a+c. Ci sono dunque quattro possibilità da testare con la divisione per 17; l’unica valida è 306306000.

Sposta il gettone
Marta può assicurarsi la vittoria spostando di due caselle il gettone A oppure il gettone D. In questo modo la distanza tra A e B risulta la stessa di quella tra C e D; a questo punto a ogni mossa di Maria Marta risponderà ripristinando questa uguaglianza tra le distanze, fino a che non si arriverà ad avere le pedine nelle ultime quattro posizioni e quindi Maria non potrà più fare alcuna mossa.

Problemini per Pasqua 2019

Il coniglio pasquale ha recuperato i problemi dal libro The Ultimate Mathematical Challenge. Sono stato buono e ho scelto quelli per ragazzi più giovani. (Per i curiosi, sono rispettivamente i problemi 177, 178, 180, 181, 182) Come al solito, le risposte tra una settimana.

Somma ridotta
Adamo ha preso un numero di cinque cifre abcde, ne ha eliminata una ottenendo così un numero di quattro cifre, e li ha sommati tra loro. Il risultato finale è 52713. Qual è la somma delle cifre del numero iniziale?

La strada verso 1000
La successione 1, n, …, 1000 – con n intero positivo – ha le seguenti proprietà: ciascun numero a partire dal terzo è la somma di tutti quelli precedenti, ed è la più lunga possibile. Qual è il valore di n?

Giornata dello Sport nel Paese delle Meraviglie
Oggi c’è stata la Giornata dello Sport nel Paese delle Meraviglie. I partecipanti erano tre: Alice, la Falsa Tartaruga e la Lepre Marzolina. Quest’ultima ha naturalmente vinto la corsa nei sacchi: in generale, tutti i contendenti hanno partecipato a tutte le gare, in ciascuna delle quali veniva assegnato un certo numero positivo di punti al primo, un altro numero al secondo e un numero ancora diverso al terzo. (Anche se siamo nel Paese delle Meraviglie, il primo prende comunque più punti del secondo e il secondo più del terzo). Il risultato finale della giornata ha visto Alice vincere con 18 punti, mentre la Falsa Tartaruga ne ha ottenuti 9 e la Lepre Marzolina 8. Sapendo che non ci sono stati ex aequo, quante sono state le prove? E chi è arrivato ultimo nella corsa col cucchiaio?

Alta divisibilità
Il numero di nove cifre abcabcbbb è divisibile per tutti i numeri da 2 a 17 compresi. Che numero è?

Sposta il gettone
Marta e Maria sono davanti a una riga di venti caselle dove sono posti quattro gettoni A, B, C, D come in figura. Ogni mossa consiste nel muovere verso destra un gettone di un numero a scelta di caselle, senza però raggiungere o superare un altro gettone. Chi non ha più mosse a disposizione, perché i gettoni sono nelle ultime quattro caselle, perde. Comincia a giocare Marta. Può vincere? Se sì, qual è la sua strategia?

Risposte ai quizzini di Natale 2018

I problemi arrivavano dalla Olimpiada Matemática Española (anni 1995 e 1996)

1. Non essere ottusi
Se n è il più piccolo intero dell’insieme e m il più grande, abbiamo che mn+99. Perché il triangolo isoscele di lati n, n, m (il più ottuso possibile) non sia ottusangolo occorre che m² ≤ 2n². Per avere i triangoli minori possibili, m = n+99, che unito all’altra disequazione dà (n + 99)² ≤ 2n² da cui si ricava n ≥ 99(1+√2), cioè n ≥ 240.
Pertanto l’insieme I minimale sarà composto dagli elementi {240, 241, 242, …., 339}. I triangoli possibili sono 100³ = 1000000; i lati totali saranno 3000000, 30000 per ciascuna delle lunghezze possibili; la somma totale dei perimetri sarà pertanto 30000(240+241+242+…+339)=868.500.000.

2. Un primo di mezzo
Dall’equazione abbiamo p|xy. Poiché l’equazione è simmetrica in x e y, possiamo supporre p|x e quindi scrivere x=ap. L’equazione diventa così
p(ap+y)=payy = pa/(a−1)

Poiché a e a−1 sono primi tra loro, bisogna che a−1|p, e quindi a−1 = ±1 oppure a−1 = ±p. I quattro casi danno rispettivamente

i) a−1 = −1 ⇒ a = 0 ⇒ x = 0, y = 0
ii) a−1 = 1 ⇒ a = 2 ⇒ x = 2p, y = 2p
iii) a−1 = −pa = p+1 ⇒ x = p(p+1), y = p+1
iv) a−1 = pa = 1−px = p(1−p), = y = p−1
I casi iii) e iv) danno infine le soluzioni simmetriche x = p+1, y = p(p+1) e x = p−1, y = p(1−p)

3. Massimo comun divisore
Espandendo la somma abbiamo (a²+b²+a+b)/ab. Essendo d il mcd di a e b, per definizione ab è un multiplo di d², come anche a² e b². Ma perché quell’espressione sia intera occorrerà che a+b sia un multiplo di d², quindi maggiore o uguale a d², da cui segue immediatamente la tesi.

4. Baricentro
Siano A’, B’, C’ i punti medi dei lati opposti rispettivamente agli angoli A, B, C. Poiché il baricentro divide le mediane in proporzione di 1 a 2, possiamo scrivere la condizione del problema come
2AC’ + 2C’G = 2AB’ + 2B’G
il che significa che i punti C’ e B’ si trovano su un’ellisse di fuochi A e G, come mostrato in figura.
Consideriamo ora il punto medio M del segmento B’C’. Esso si trova sull’asse maggiore dell’ellisse e non può esserne il centro perché la sua distanza da A è il doppio di quella da G; quindi B’C’ è perpendicolare ad AA’, quest’ultimo segmento è pertanto sia altezza che mediana e dunque il triangolo è isoscele in A.

5. Spioni
Iniziamo col definire “neutrali” due agenti A e B tali che A non spia B e B non spia A. Se chiamiamo gli agenti A1, A2, …, A16 possiamo definire i seguenti numeri per ogni agente Ai:
ai è il numero di agenti che spiano Ai;
bi è il numero di agenti che Ai spia;
ci è il numero di agenti neutrali rispetto ad Ai.

È immediato che per ogni i abbiamo che ai + bi + ci = 15, perché abbiamo considerato tutti i possibili agenti. Un po’ meno immediato è notare che ai + ci ≤ 8 e bi + ci ≤ 8, sempre per ogni i. Se non fosse così, infatti, potremmo prendere i nove elementi e Ai, e sarebbe impossibile formare la catena. Combinando queste relazioni otteniamo che ci ≤ 1; pertanto ciascun agente ha al più un collega neutrale. Inoltre, poiché l’essere neutrali è una proprietà riflessiva (se A è neutrale rispetto B allora B è neutrale rispetto ad A), eventuali spie neutrali possono essere accoppiate sapendo che nessuna di esse può avere altre spie neutrali.

Immaginiamo ora che esista un gruppo di 11 spie per cui non si possa creare una catena. Poiché 11 è dispari, ci deve essere necessariamente almeno un agente S che non è neutrale rispetto a nessuno degli altri dieci. Togliamo momentaneamente S, e formiamo la catena con i rimanenti agenti C1, C2, C3, …, C10 dove ciascuno spia l’agente col numero seguente e C10 spia C1. Per le disuguaglianze iniziali sappiamo che S deve spiare almeno uno dei Ci ed essere spiato da almeno un altro Ci. Se facciamo il giro dei Ci arriveremo dunque a un punto in cui l’agente precedente spia S e quello seguente è spiato da S; basta pertanto inserire S tra questi due agenti e ottenere la catena richiesta.

Quizzini per Natale 2018

Che Natale sarebbe senza i quizzini del Post? Le risposte tra una settimana. Gli ultimi due sono più difficili, magari poi posterò un aiutino 😉

1. Non essere ottusi

Considerate tutti gli insiemi I di cento numeri interi positivi distinti con la seguente proprietà: dati tre qualunque elementi a, b e c in I, il triangolo di lati a, b, c non è mai ottusangolo. Se S(I) è la somma dei perimetri di tutti i possibili triangoli diversi formati da tre elementi (non necessriamente distinti) di I, qual è il suo valore minimo?
(Se gli elementi di I fossero {100, 101, … 199} un triangolo di lati 100, 100, 100 è da contare, così come uno di lati 100, 100, 101. Per semplicità dei conti, immaginate che un triangolo di lati 101, 100, 100 sia diverso da uno di lati 100, 100, 101)

2. Un primo di mezzo
Sia p un numero primo. Trovate le soluzioni (relative a p) intere (positive, negative o nulle) dell’equazione p(x+y)=xy. (Ricordo che 1 non è un numero primo, e tantomeno lo è 0)

3. Massimo comun divisore
I numeri naturali a e b sono tali per cui ((a+1)/b)+((b+1)/a) è intero. Se d è il massimo comun divisore tra a e b, dimostrate che d ≤ √(a+b).

4. Baricentro
Sia G il baricentro del triangolo ABC. Dimostrate che se AB + GC = AC + GB allora il triangolo è isoscele.

5. Spioni
Nell’isola di Spiolandia ci sono 16 agenti segreti. Ciascuno di essi spia almeno uno dei suoi colleghi; se poi un agente A spia un agente B, allora l’agente B non spia l’agente A. Inoltre dato un qualunque insieme di dieci agenti A1, A2, A3, …, A10, è possibile ordinarli in una catena in modo che il primo spii il secondo, il secondo il terzo, e così via, fino al decimo che spia il primo. Dimostrate che allora esiste una catena simile anche con 11 agenti qualunque.