Tag Archives: quizzini

Problemini per Ferragosto 2019

Siete pronti a risolvere questi (facili…) problemini? Come sempre, tra una settimana ci sarà la risposta.

1. Trapezio
Nella figura qui sotto, i lati JK e ML sono paralleli; inoltre i segmenti JK, oK, Jo, MO sono tutti uguali tra loro, come lo sono KL, OL, ML. Quanto misura l’angolo JMO?
il trapezio

2. Tre su quattro
Genoveffa ha scritto quattro numeri (interi positivi) su un foglio. Se ne sceglie tre di essi e li somma, può ottenere come risultato 115, 153, 169 oppure 181. Qual è il più grande tra i quattro numeri?
115, 153, 169, 181

3. La tavola rotonda
Cinque ragazzi – tre maschi: Vincenzo, Walter, Zeno, e due femmine: Xenia e Yolanda – sono seduti a un tavolo rotondo. Ciascuno di loro proviene da una città diversa: Aosta, Belluno, Cagliari, Domodossola ed Enna. L’aostano è seduto tra Zeno e l’ennese; né Xenia né Yolanda sono vicine a Walter; Vincenzo siede tra Yolanda e l’ossolano; Zeno sta parlando con il cagliaritano. Di quale città sono i ragazzi?
tavola rotonda
(Immagine originale di joelma moraes, da UIHere.com)

4. Non solo biciclette
Nel negozio ENNEciclette sono esposte biciclette, tricicli e monocicli. Nicoletta conta sette selle e tredici ruote: inoltre ci sono più biciclette che tricicli. Quanti sono i monocicli?
monociclo
(Immagine da clipart-library.com)

5. Gara a quiz
Lucilla e Mirella fanno una gara a chi risolve più quiz: ce ne sono 100, chi ne risolve uno per prima ottiene quattro punti, la seconda uno solo, e naturalmente chi non lo risolve non prende nessun punto. Entrambe le ragazze risolvono 60 quiz – non necessariamente gli stessi – e in tutto ottengono 312 punti. Quanti problemi hanno risolto entrambe?
risposta esatta!

Risposte ai problemini per Pasqua 2019

So che aspettavate con ansia le risposte: eccole qua! (Se invece vi siete collegati solo adesso, forse conviene che prima leggiate le domande…)

Somma ridotta
Se Adamo avesse tolto una cifra diversa dall’ultima, la somma dei due numeri sarebbe dovuta essere pari. Non essendolo, sappiamo che è stata tolta l’ultima e quindi la somma è abcde+abcd = 11×abcd+e. Dividendo 52713 per 11 otteniamo 4792 con resto 1; quindi il numero di partenza è 49721 che ha 23 come somma delle cifre.

La strada verso 1000
Scriviamo esplicitamente i primi termini della serie: 1, n, 1+n, 2(1+n), 4(1+n), …; insomma il termine generale è della forma 2k(1+n). Poichè 1000 si fattorizza come 23·125; abbiamo che la successione più lunga avrà 1+n=125 e quindi n=124.

Giornata dello Sport nel Paese delle Meraviglie
Innanzitutto notiamo che sono stati assegnati 35 punti, cioè 5×7 (più eventuali fattori 1 che non contano perché ci sono state almeno due gare); quindi o ci sono state 5 gare con assegnati 7 punti o 7 gare con 5 punti assegnati. Ma poiché il numero minimo di punti assegnabili in una gara è 6 (3-2-1) quest’ultima ipotesi è da escludere. Abbiamo pertanto 5 gare, nelle quali si assegnano 4-2-1 punti. La Lepre Marzolina ha ottenuto 4 punti nella corsa nei sacchi, quindi è arrivata sempre ultima nelle altre gare, compresa la corsa col cucchiaio. (Per la cronaca, Alice è arrivata seconda nella corsa nei sacchi e ha vinto tutte le altre gare; la Falsa Tartaruga è sempre arrivata seconda tranne che nella corsa nei sacchi.)

Alta divisibilità
Per prima cosa, visto che il numero è divisibile per 10 allora b deve essere 0 e quindi esso è della forma a0ca0c000, cioè 1000 × 1001 × a0c. Ma 1001 è 7×11×13 e 1000 è multiplo di 8. Restano quindi da considerare solo i fattori 9, 16 e 17. Per 16, occorre che c sia una cifra pari; per 9, che 2(a+c) sia multiplo di 9 e quindi che lo sia a+c. Ci sono dunque quattro possibilità da testare con la divisione per 17; l’unica valida è 306306000.

Sposta il gettone
Marta può assicurarsi la vittoria spostando di due caselle il gettone A oppure il gettone D. In questo modo la distanza tra A e B risulta la stessa di quella tra C e D; a questo punto a ogni mossa di Maria Marta risponderà ripristinando questa uguaglianza tra le distanze, fino a che non si arriverà ad avere le pedine nelle ultime quattro posizioni e quindi Maria non potrà più fare alcuna mossa.

Problemini per Pasqua 2019

Il coniglio pasquale ha recuperato i problemi dal libro The Ultimate Mathematical Challenge. Sono stato buono e ho scelto quelli per ragazzi più giovani. (Per i curiosi, sono rispettivamente i problemi 177, 178, 180, 181, 182) Come al solito, le risposte tra una settimana.

Somma ridotta
Adamo ha preso un numero di cinque cifre abcde, ne ha eliminata una ottenendo così un numero di quattro cifre, e li ha sommati tra loro. Il risultato finale è 52713. Qual è la somma delle cifre del numero iniziale?

La strada verso 1000
La successione 1, n, …, 1000 – con n intero positivo – ha le seguenti proprietà: ciascun numero a partire dal terzo è la somma di tutti quelli precedenti, ed è la più lunga possibile. Qual è il valore di n?

Giornata dello Sport nel Paese delle Meraviglie
Oggi c’è stata la Giornata dello Sport nel Paese delle Meraviglie. I partecipanti erano tre: Alice, la Falsa Tartaruga e la Lepre Marzolina. Quest’ultima ha naturalmente vinto la corsa nei sacchi: in generale, tutti i contendenti hanno partecipato a tutte le gare, in ciascuna delle quali veniva assegnato un certo numero positivo di punti al primo, un altro numero al secondo e un numero ancora diverso al terzo. (Anche se siamo nel Paese delle Meraviglie, il primo prende comunque più punti del secondo e il secondo più del terzo). Il risultato finale della giornata ha visto Alice vincere con 18 punti, mentre la Falsa Tartaruga ne ha ottenuti 9 e la Lepre Marzolina 8. Sapendo che non ci sono stati ex aequo, quante sono state le prove? E chi è arrivato ultimo nella corsa col cucchiaio?

Alta divisibilità
Il numero di nove cifre abcabcbbb è divisibile per tutti i numeri da 2 a 17 compresi. Che numero è?

Sposta il gettone
Marta e Maria sono davanti a una riga di venti caselle dove sono posti quattro gettoni A, B, C, D come in figura. Ogni mossa consiste nel muovere verso destra un gettone di un numero a scelta di caselle, senza però raggiungere o superare un altro gettone. Chi non ha più mosse a disposizione, perché i gettoni sono nelle ultime quattro caselle, perde. Comincia a giocare Marta. Può vincere? Se sì, qual è la sua strategia?

Risposte ai quizzini di Natale 2018

I problemi arrivavano dalla Olimpiada Matemática Española (anni 1995 e 1996)

1. Non essere ottusi
Se n è il più piccolo intero dell’insieme e m il più grande, abbiamo che mn+99. Perché il triangolo isoscele di lati n, n, m (il più ottuso possibile) non sia ottusangolo occorre che m² ≤ 2n². Per avere i triangoli minori possibili, m = n+99, che unito all’altra disequazione dà (n + 99)² ≤ 2n² da cui si ricava n ≥ 99(1+√2), cioè n ≥ 240.
Pertanto l’insieme I minimale sarà composto dagli elementi {240, 241, 242, …., 339}. I triangoli possibili sono 100³ = 1000000; i lati totali saranno 3000000, 30000 per ciascuna delle lunghezze possibili; la somma totale dei perimetri sarà pertanto 30000(240+241+242+…+339)=868.500.000.

2. Un primo di mezzo
Dall’equazione abbiamo p|xy. Poiché l’equazione è simmetrica in x e y, possiamo supporre p|x e quindi scrivere x=ap. L’equazione diventa così
p(ap+y)=payy = pa/(a−1)

Poiché a e a−1 sono primi tra loro, bisogna che a−1|p, e quindi a−1 = ±1 oppure a−1 = ±p. I quattro casi danno rispettivamente

i) a−1 = −1 ⇒ a = 0 ⇒ x = 0, y = 0
ii) a−1 = 1 ⇒ a = 2 ⇒ x = 2p, y = 2p
iii) a−1 = −pa = p+1 ⇒ x = p(p+1), y = p+1
iv) a−1 = pa = 1−px = p(1−p), = y = p−1
I casi iii) e iv) danno infine le soluzioni simmetriche x = p+1, y = p(p+1) e x = p−1, y = p(1−p)

3. Massimo comun divisore
Espandendo la somma abbiamo (a²+b²+a+b)/ab. Essendo d il mcd di a e b, per definizione ab è un multiplo di d², come anche a² e b². Ma perché quell’espressione sia intera occorrerà che a+b sia un multiplo di d², quindi maggiore o uguale a d², da cui segue immediatamente la tesi.

4. Baricentro
Siano A’, B’, C’ i punti medi dei lati opposti rispettivamente agli angoli A, B, C. Poiché il baricentro divide le mediane in proporzione di 1 a 2, possiamo scrivere la condizione del problema come
2AC’ + 2C’G = 2AB’ + 2B’G
il che significa che i punti C’ e B’ si trovano su un’ellisse di fuochi A e G, come mostrato in figura.
Consideriamo ora il punto medio M del segmento B’C’. Esso si trova sull’asse maggiore dell’ellisse e non può esserne il centro perché la sua distanza da A è il doppio di quella da G; quindi B’C’ è perpendicolare ad AA’, quest’ultimo segmento è pertanto sia altezza che mediana e dunque il triangolo è isoscele in A.

5. Spioni
Iniziamo col definire “neutrali” due agenti A e B tali che A non spia B e B non spia A. Se chiamiamo gli agenti A1, A2, …, A16 possiamo definire i seguenti numeri per ogni agente Ai:
ai è il numero di agenti che spiano Ai;
bi è il numero di agenti che Ai spia;
ci è il numero di agenti neutrali rispetto ad Ai.

È immediato che per ogni i abbiamo che ai + bi + ci = 15, perché abbiamo considerato tutti i possibili agenti. Un po’ meno immediato è notare che ai + ci ≤ 8 e bi + ci ≤ 8, sempre per ogni i. Se non fosse così, infatti, potremmo prendere i nove elementi e Ai, e sarebbe impossibile formare la catena. Combinando queste relazioni otteniamo che ci ≤ 1; pertanto ciascun agente ha al più un collega neutrale. Inoltre, poiché l’essere neutrali è una proprietà riflessiva (se A è neutrale rispetto B allora B è neutrale rispetto ad A), eventuali spie neutrali possono essere accoppiate sapendo che nessuna di esse può avere altre spie neutrali.

Immaginiamo ora che esista un gruppo di 11 spie per cui non si possa creare una catena. Poiché 11 è dispari, ci deve essere necessariamente almeno un agente S che non è neutrale rispetto a nessuno degli altri dieci. Togliamo momentaneamente S, e formiamo la catena con i rimanenti agenti C1, C2, C3, …, C10 dove ciascuno spia l’agente col numero seguente e C10 spia C1. Per le disuguaglianze iniziali sappiamo che S deve spiare almeno uno dei Ci ed essere spiato da almeno un altro Ci. Se facciamo il giro dei Ci arriveremo dunque a un punto in cui l’agente precedente spia S e quello seguente è spiato da S; basta pertanto inserire S tra questi due agenti e ottenere la catena richiesta.

Quizzini per Natale 2018

Che Natale sarebbe senza i quizzini del Post? Le risposte tra una settimana. Gli ultimi due sono più difficili, magari poi posterò un aiutino 😉

1. Non essere ottusi

Considerate tutti gli insiemi I di cento numeri interi positivi distinti con la seguente proprietà: dati tre qualunque elementi a, b e c in I, il triangolo di lati a, b, c non è mai ottusangolo. Se S(I) è la somma dei perimetri di tutti i possibili triangoli diversi formati da tre elementi (non necessriamente distinti) di I, qual è il suo valore minimo?
(Se gli elementi di I fossero {100, 101, … 199} un triangolo di lati 100, 100, 100 è da contare, così come uno di lati 100, 100, 101. Per semplicità dei conti, immaginate che un triangolo di lati 101, 100, 100 sia diverso da uno di lati 100, 100, 101)

2. Un primo di mezzo
Sia p un numero primo. Trovate le soluzioni (relative a p) intere (positive, negative o nulle) dell’equazione p(x+y)=xy. (Ricordo che 1 non è un numero primo, e tantomeno lo è 0)

3. Massimo comun divisore
I numeri naturali a e b sono tali per cui ((a+1)/b)+((b+1)/a) è intero. Se d è il massimo comun divisore tra a e b, dimostrate che d ≤ √(a+b).

4. Baricentro
Sia G il baricentro del triangolo ABC. Dimostrate che se AB + GC = AC + GB allora il triangolo è isoscele.

5. Spioni
Nell’isola di Spiolandia ci sono 16 agenti segreti. Ciascuno di essi spia almeno uno dei suoi colleghi; se poi un agente A spia un agente B, allora l’agente B non spia l’agente A. Inoltre dato un qualunque insieme di dieci agenti A1, A2, A3, …, A10, è possibile ordinarli in una catena in modo che il primo spii il secondo, il secondo il terzo, e così via, fino al decimo che spia il primo. Dimostrate che allora esiste una catena simile anche con 11 agenti qualunque.

Quizzini di Ferragosto 2018

Soliti problemini matematici abbastanza d’annata e direi non troppo complicati: la risposta sarà data tra una settimana.

Successioni e quadrati

In una successione aritmetica, la differenza d tra due elementi successivi è costante. È facile costruire una successione aritmetica di numeri positivi che non contenga alcun quadrato perfetto: prendiamo per esempio 7, 17, 27… Dimostrate che però se essa contiene un quadrato perfetto allora ne avrà infiniti.

a, a+d, a+2d...

Meteorologia

L’ente del turismo di Matelandia vuole compilare una statistica dei giorni di sole o pioggia nella nazione. Chiede i dati di sei regioni, solo che non si è ben spiegato e quindi i dati arrivano come “giorni di sole oppure pioggia”, come vedete nella tabella qui sotto. Recuperati i dati completi con la suddivisione ulteriore tra giorni di sole e di pioggia, ci si accorge che se si esclude una delle regioni allora il numero di giorni di sole è il triplo di quelli di pioggia. Quale regione è da escludere?

tabella

Un triangolo particolare

In un triangolo isoscele ABC l’angolo al vertice A misura 36 gradi. Calcolate il rapporto b/a tra i lati AC e BC.

triangolo isoscele

Tre per sette

Si prendano ventun pedine, alcune bianche e altre nere, e le si dispongano in una scacchiera 3×7, una per casella. Si dimostri che ci sarà sempre un rettangolo (non banale, quindi non 1×k) ai cui vertici ci siano pedine dello stesso colore. Il rettangolo è con i lati paralleli alle caselle, per completezza.

Triangolazione

Dato un poligono convesso di m lati, lo si triangoli: si aggiunga cioè un certo numero di punti interni e lo si suddivida in n triangoli, tali che non ci sia nessuna sovrapposizione tra di essi e due triangoli possano avere un comune o un vertice o un lato (nessun vertice di un triangolo tocca un punto interno a un lato, insomma). Si dimostri che m+n è pari.

triangolazione

Risposte ai quizzini di Ferragosto 2016

Ecco le risposte ai quizzini della scorsa settimana!

1. Messaggio segreto

Se piegate la testa di 90 gradi in senso orario e guardate di sbieco il monitor, potrete leggere la parola “CIAONE!”

2. Regalo di compleanno

Il mese in questione deve per forza essere febbraio, perché il primo e l’ultimo del mese caschino nello stesso giorno della settimana. Eccettuate fecondazioni assistite, la signora deve avere compiuto 28 anni perché anche il giorno di nascita sia lo stesso giorno della settimana.

3. Espansione

Il coefficiente è zero, perché tra i fattori c’è anche xx.

4. Musica

La melodia più lunga possibile è di sedici note: do-do-sol-do-sol-do-do-sol-do-sol-do-do-sol-do-do-sol (insieme a quella speculare).

5. Dadi
La probabilità di non ottenere alcun sei è (5/6)^5. La probabilità di ottenere un 6 in uno specifico lancio e nessuno negli altri quattro è (1/6)(5/6)^4; visto che uno qualunque dei cinque lanci può essere quello buono, la probabilità totale è la somma delle probabilità, cioè di nuovo (5/6)^5. Insomma, il gioco è equo.

Quizzini per Ferragosto 2016

Quest’anno i quizzini sono tratti dal libro di Dick Hess Mental Gymnastics. Al solito, le soluzioni tra una settimana.

1. Messaggio segreto

Riuscite a decifrare il messaggio segreto qui mostrato?

ago2016
2. Regalo di compleanno

Qualche tempo fa, una signora si è sposata il primo giorno di un certo mese; l’ultimo giorno di quel mese, quello del suo compleanno, abbracciò il marito e gli disse “Caro, siamo incinti!”. Sapendo che è nata, si è sposata, e ha scoperto di essere incinta nello stesso giorno della settimana, quanti anni ha compiuto?

3. Espansione

Qual è il coefficiente di x⊃2 nell’espressione data dal prodotto dei ventisei termini (xa)(xb)(xc) … (xy)(xz)?

4. Musica
La musica sacra del pianeta Alfa Lira usa solo due note: do e fa. Inoltre, nessun brano può avere tre successioni uguali in sequenza (in do do sol do do sol do do sol, per esempio, “do do sol” è ripetuta tre volte) né ci possono essere due sol consecutivi. Qual è il brano più lungo possibile?

5. Dadi
Dovete lanciare cinque dadi. Se ottenete un solo sei, vincete. Se non ne ottenete nessuno, perdete. Altrimenti pareggiate. Il gioco vi conviene o no?

Risposte ai quizzini di Pasqua 2016

Ecco le soluzioni tanto agognate!

1. Da 10 a 1
Si può scendere a 22 caratteri, per esempio con 10×9×8×7×6÷5÷(4−3+2)×1.
Se si fosse potuto concatenare le cifre, si sarebbe potuto scendere a 17 caratteri con 10+9×8−7+654×3−21.
(fonte)

2. Tre interi positivi
Il minor valore possibile per ab+c è 96. Innanzitutto possiamo ottenere 96 scegliendo a=1, e {b,c} = {31,65}. Per dimostrare che non si può scendere sotto 96, considerando la disuguaglianza aritmo-geometrica abbiamo che ab+c≥2√(abc) = 2√(a(2016−a) = 2√(1008²−(1008−a)²). Poiché 2√(1008²−1006²) > 96, abbiamo che |1008−a| > 96. Le uniche possibilità sono a=1 e a=2015: quest’ultima non è chiaramente valida, quindi abbiamo a=1 e bc=2015, e tra tutti i modi di scrivere 2015 come prodotto di due fattori quello con la somma minore dà per l’appunto 96.
(fonte)

3. Quattro 4
La soluzione è 2016 = (4+4)! / (4! − 4).
(fonte)

4. Disuguaglianze
Elevando entrambi i valori all’esponente 2015*2016, otteniamo rispettivamente (2015!)^2016 e (2016!)^2015. Dividendoli entrambi per (2015!)^2015 otteniamo rispettivamente 2015! e 2016^2015, da cui si vede immediatamente che il secondo è maggiore del primo, perché entrambi sono il prodotto di 2015 valori dei quali quelli del secondo numero sono tutti strettamente maggiori di quelli del primo.
(fonte)

5. Numeri autocomponibili
Come ha scoperto Marco Broglia, 2016=(.2/.(1)+0!)*6!
(fonte)

Quizzini per Pasqua 2016

Le tradizioni si rispettano… Eccovi cinque problemi, tutti relativi al numero 2016. La prossima settimana ci saranno le soluzioni.

1. Da 10 a 1
Scrivete i numeri da 10 a 1 in ordine inverso,
10 9 8 7 6 5 4 3 2 1
e inserite i segni delle quattro operazioni ed eventualmente parentesi per ottenere 2016 usando il minor numero di caratteri possibile. Una soluzione per esempio sarebbe (10-9)*8*7*(6-5)*4*3*(2+1) che usa 26 caratteri, ma si può fare di meglio. (Nota: non vale usare la moltiplicazione implicita, tipo 7(6-5) anziché 7*(6-5). L’espressione deve poter essere messa su Google ed essere riconosciuta. Né vale concatenare le cifre, usando per esempio 76)

2. Tre interi positivi
Trovate il minor valore possibile per l’espressione ab+c, dove a,b,c sono interi positivi e a+bc=2016.

3. Quattro 4
Come forse sapete, se si accetta come operatore il logaritmo naturale allora è possibile scrivere un qualunque numero intero usando solo quattro 4 e un po’ di operatori matematici. I curiosi possono vedere la formula su Wikipedia. Eliminiamo dunque il logaritmo e permettiamo solo le quattro operazioni, l’elevamento a potenza, la radice quadrata (e quarta, se proprio volete), il fattoriale e il punto decimale, oltre a tutte le parentesi che volete. Esprimete 2016 usando solo quattro 4.

4. Disuguaglianze
Quale di questi due numeri è maggiore: 2015√(2015!) oppure 2016√(2016!)?
(se non si leggono bene i numeri, sono la radice 2015ma del fattoriale di 2015 e la radice 2016ma del fattoriale di 2016)

5. Numeri autocomponibili
Chiamiamo un numero autocomponibile se può essere ottenuto usando le cifre del numero stesso (ogni cifra una e una sola volta) per mezzo di varie operazioni aritmetiche: le quattro operazioni di base, l’elevazione a potenza, il fattoriale, il punto decimale come in 4.5 oppure in .5, la notazione .(n) per indicare n periodico, la radice quadrata (ed n-sima se n è una cifra presente nel numero di partenza…), e tutte le parentesi che si vuole. Esempi di numeri autocomponibili sono 25 = 5² e 343 = (3+4)³; in questo caso il numero è ordinatamente autocomponibile, perché le cifre usate nell’espressione sono nello stesso ordine di quelle del numero. Bene: mostrate che 2016 è autocomponibile.