Tag Archives: carnevale della matematica

Carnevale della matematica #132

“canta il merlo, canta all’alba”
(Poesia gaussiana)

logo-carnevale_matematica
Benvenuti all’edizione numero 132 del Carnevale della Matematica! Diciamo che le vacanze estive sono state così intense che mi ero dimenticato di approntare il numero… Quindi non stupitevi se nonostante i due mesi di iato ci sarà meno materiale del solito.

Cominciamo con le proprietà numeriche del 132. Per prima cosa, è un numero abbondante, perché la somma dei suoi divisori propri è 204 e quindi maggiore di sé stesso. In compenso, scegliendo opportunamente alcuni dei suoi divisori si può ottenere 132, e pertanto è un numero semiperfetto. Fa parte di tredici terne pitagoriche e può essere scritto come differenza di due quadrati in due modi diversi: 132=14²-8²=34²-32²; è la somma di sei primi consecutivi, 13 + 17 + 19 + 23 + 29 + 31 = 132, ed è un numero oblungo, cioè della forma n(n+1). Tra l’altro ho scoperto che il primo a studiare i numeri oblunghi è stato Aristotele! È poi un numero rifattorizzabile, perché è divisibile per il numero dei suoi divisori, ed è un numero pratico, perché tutti i numeri inferiori ad esso possono essere scritti come somma di alcuni dei suoi divisori; infine è il sesto numero di Catalan, e se pensate che non sia una cosa così importante vi ricordo che il quinto numero di Catalan è 42 🙂
Se consideriamo il numero in base 10, possiamo dire che è un numero colombiano (non può essere espresso come la somma di un numero intero e delle sue cifre), un numero di Harshad (è divisibile per la somma delle sue cifre), e soprattutto è il più piccolo numero di Osiride: se si sommano tutti i numeri che si ottengono prendendo due delle cifre del numero, si ricava proprio 132.
Due ultime curiosità. Il colorante E132, l’indigotina, è di un bel blu come dice il suo nome: ma in un ambiente estremamente basico (pH ≥ 13) diventa giallo. Infine, per chi è anzyano come me e usava regolarmente le stampanti ad aghi, queste avevano 80 caratteri (a dimensione fissa…) per riga, a meno che non si usasse il font condensato: in questo caso si arrivava a 132 caratteri.

Visto che 132 è un numero ben fattorizzabile, la cellula melodica preparata da Dioniso è cantabile senza troppi problemi: eccovela qua.


Annalisa Santi ci racconta che mentre era in vacanza in montagna le è capitato di vedere alcune tombe collocate, come si usava una volta, intorno alla Chiesa parrocchiale: una di esse l’aveva colpita perché molto simile, nella forma e per la presenza di un curioso epitaffio, a quella che aveva ricordato in un post. In L’equazione su una tomba…l’epitaffio di Diofanto! parla della presunta tomba e dell’indovinello che, secondo la leggenda, Diofanto stesso volle venisse scritto sotto forma di epitaffio. Un facile problema aritmetico, proposto sotto forma di epigramma, che fa parte della raccolta di 45 indovinelli, corrispondenti ad equazioni di primo grado ad un’incognita, che l’epigrammista greco Metrodoro incluse nell’Antologia Greca.


Mauro Merlotti è presente con due post nel suo Zibaldone Scientifico. In 250. Rebus si parla dell’effetto Droste ed altri effetti collaterali; noto a tutti, Mauro spiega che è un tipico argomento estivo che impegna poco. Il secondo post, 249. Oloide, racconta di quella che probabilmente è l’unica forma tridimensionale che puó ruotare su tutta la sua superficie. Scoperto da Paul Schatz nel 1929, sembra strano che nessuno abbia pensato prima all’oloide…


Dioniso vive ad Heidelberg, dove è in corso la mostra „La La Lab – Die Mathematik der Musik“ nell’ambito dell’Heidelberg Laureate Forum. Trattandosi di matematica della musica lui non potevo mancare: è stato subito attratto da una tastiera con cui poter suonare con quattro diverse intonazioni: temperamento equabile, intonazione pitagorica, intonazione naturale e temperamento mesotonico. Ne parla in Die Mathematik der Musik ovvero la matematica della musica.


Roberto Natalini, reduce dal convegno UMI a Pavia, ci presenta i post di MaddMaths!, convenientemente divisi per argomento.

Recensioni: (sì, si pubblicano tanti libri sulla matematica, per fortuna!)

  • La collana “Grandi idee della matematica” dal 24 agosto in edicola. Dal 24 agosto la casa editrice Hachette lancia la collana di libri “GRANDI IDEE DELLA MATEMATICA”. Roberto Natalini ha avuto modo di esaminarla in anteprima.
  • Germano Pettarin e la matematica raccontata. Negli ultimi anni sono apparsi, editi da Einaudi Ragazzi, alcun libri di racconti a sfondo matematico di Germano Pettarin. Roberta Munarini li ha letti e recensiti per MaddMaths!.
  • Un vortice di racconti ed una vertigine temporale. Marco Fulvio Barozzi, formatore, blogger scientifico (noto in rete come Kees Popinga) e infaticabile tessitore di connessioni tra scienza e umanesimo, ha pubblicato con Scienza Express il libro “Vortici e vertigini”. Sandra Lucente lo ha letto e lo recensisce per il nostro sito.
  • Il matematico che amava i Beatles (e i Led Zeppelin). È uscito per l’editore Hoepli, il libro di Paolo Alessandrini “Matematica rock. Storie di musica e numeri dai Beatles ai Led Zeppelin”. Lo ha letto e recensito per il nostro sito Roberto Natalini.
  • Come è difficile fare previsioni, recensione del libro di Gammaitoni e Vulpiani. È appena stato pubblicato dalle edizioni Dedalo il libro di Luca Gammaitoni e Angelo Vulpiani “Perché è difficile prevedere il futuro – Il sogno più sfuggente dell’uomo sotto la lente della fisica”. Un commento di Roberto Natalini.
  • Recensione: “I teoremi di incompletezza” di Gabriele Lolli. Con il suo “I teoremi di incompletezza” Gabriele Lolli consegna al pubblico più ampio un volume di notevole interesse. Il suo obiettivo non è raccontare i teoremi, né tantomeno spiegare le loro dimostrazioni. Ciò che Lolli fa con successo, è dare a chiunque legga attentamente il volume una misura indiretta dell’importanza di questi risultati. Una recensione di Hykel Hosni.
  • Educare alla razionalità. Tra logica e didattica della matematica. È uscito da poco, per le Edizioni dell’Unione Matematica Italiana il libro “Educare alla razionalità. Tra logica e didattica della matematica”, curato da Francesca Morselli, Pino Rosolini e Carlo Toffalori.

Per quanto riguarda i contributi relativi a scuola e didattica, ci sono

  • Sofia Sabatti: Gli errori, il lavoro di squadra, le mani e la scala a chiocciola. Sofia Sabatti, della Scuola Secondaria di primo grado “Piero Calamandrei” dell’Istituto comprensivo “Cristoforo Colombo” di Chirignago, a Venezia, è risultata vincitrice quest’anno del Premio UMI dedicato alla memoria di Stefania Cotoneschi docente presso Scuola Città Pestalozzi di Firenze, scomparsa nel 2015. Questo premio, consegnato in occasione del XXI congresso UMI, è destinato ad un docente di ruolo di Scienze Matematiche, Chimiche, Fisiche e Naturali di scuola secondaria di primo grado, che si sia distinto per la diffusione della educazione matematica tra i giovani e più in generale nella società o nella comunità scientifica, attraverso pubblicazioni oppure opere grafiche o produzione di materiale audiovisivo o interventi su siti web. MaddMaths! ha chiesto a Sofia di scrivere qualcosa per loro.
  • Radio Libertà. In questo nuovo contributo per la rubrica Esperienze Transdisciplinari di Matematica, Gianluigi Boccalon racconta un altro progetto nel quale i suoi studenti di scuola secondaria di primo grado sono stati protagonisti di una attività di divulgazione matematica che ha coinvolto diverse scuole, collegate da un canale particolare, le frequenze radio dei radioamatori.
  • Il clamore sui risultati INVALSI. Lo scorso 10 luglio sono stati presentati i risultati delle prove INVALSI 2019 presso l’Aula dei Gruppi Parlamentari alla Camera dei Deputati. Pietro Di Martino propone alcune considerazioni a margine dei commenti che si sono susseguiti nei media e sul web.

Vari articoli sono dedicati al numero 2/2019 di Archimede.

  • È uscito Archimede 2/2019. È uscito il n. 2/2019 della rivista Archimede. Ecco il sommario del direttore Roberto Natalini.
  • A colpo d’occhio: Archimede 2/2019. Da questo numero, Archimede si arricchisce di una nuova rubrica, condotta da Roberto Zanasi: A colpo d’occhio.
  • Archimedia 2/2019: Delitto nella savana. A partire dalla sua prima uscita del 2016, Archimede ospita Archimedia, una rubrica di fumetti e altri media curata da Andrea Plazzi. Nel n. 2/2019 trovate “Delitto nella Savana”, un fumetto di Giovanni Eccher (storia e testi) e Federico Bertolucci (disegni) in cui le teorie sulla dinamica della popolazione di Volterra vengono utilizzate per risolvere un originale caso poliziesco. Qui è come al solito ripresa la prefazione di Andrea Plazzi: l’intera storia è ovviamente nella rivista…
  • Minecraft e Matematica. Milioni di persone in tutto il mondo giocano a Minecraft. Questo videogioco, con i suoi 154 milioni di copie vendute, risulta essere il secondo più venduto di sempre dopo Tetris. In particolare Minecraft è molto diffuso nella fascia di età che comprende gli ultimi anni della scuola elementare e la scuola secondaria di primo grado (ovvero scuola media) per arrivare fino ai primi anni di quella di secondo grado. Questa diffusione del gioco è stato lo spunto per scrivere un articolo dal titolo “Minecraft e Matematica” apparso nel n. 2/2019 di Archimede, all’interno della rubrica la “Leva di Archimede”. A cura di Davide Passaro.

Per terminare, commenti, eventi e reportage.

  • Alessio Figalli al XXI congresso dell’UMI a Pavia. Come avrete capito, da lunedi 2 settembre a sabato 7 settembre si è tenuto a Pavia il XXI congresso dell’Unione Matematica Italiana. Ospite d’onore del congresso è stato Alessio Figalli, vincitore un anno fa della medaglia Fields, e da pochi giorni direttore del Forschungsinstitut für Mathematik (FIM, Istituto di ricerca matematico) dell’ETH di Zurigo. A Pavia il 4 settembre Alessio ha tenuto una public lecture dal titolo “Matematica Ottimale”. Qui il video integrale della conferenza e un’intervista di Roberto Natalini ad Alessio Figalli.
  • La Teoria delle Categorie sbarca su Forbes. Chissà che cosa avrebbe pensato Bertie Charles Forbes se avesse saputo che la rivista di economia da lui fondata nel 1917 avrebbe ospitato sulle sue pagine un articolo che ha come oggetto una teoria matematica di notevole astrattezza quale la teoria delle categorie? Di questo e di altro parla Giuseppe Metere.
  • PinKamp: le ragazze contano!. Dal 17 al 28 giugno 2019, presso la sede di Coppito del DISIM (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica) dell’Università degli Studi dell’Aquila, si è svolta la seconda edizione del PinKamp, un evento tutto al femminile volto ad avvicinare le ragazze delle scuole superiori verso il panorama delle discipline “STEM” (Science, Technology, Engineering, Mathematics). Matteo Colangeli e Margherita, Lelli Chiesa, RTDb presso l’Università dell’Aquila, i due matematici del team PinKamp, hanno scritto questo reportage per MaddMaths!

Piotr Silverbrahms si preoccupa del fato dei post dei Rudi Matematici tra il 14 luglio e il 13 agosto, che naturalmente fanno parte di questo carnevale perché ad agosto eravamo tutti in vacanza 🙂 Eccoveli qua:

  • Un paterno consiglio – un Paraphernalia Mathematica che si avventura nel Linkage Clustering, tirando in ballo l’algoritmo di Brian Kernighan e un sacco di altre cose complicate. Gli informatici gongolano (o gongooglano?).
  • Società segrete di matematica – Post istituzionale dei soluzione del problema pubblicato su “Le Scienze” di Luglio. Si parla di deduzioni e loschi figuri incappucciati.
  • Buon Compleanno Gabriel – Compleanno dedicato a Gabriel Cramer, famoso per l’omonima regola. Il titolo originale del compleanno, quando apparve sulla e-zine, era “I Dioscuri di Rousseau”, perché in realtà è un compleanno doppio, dedicato a Cramer e a Calandrini, Dioscuri matematici d’elezione. E no, le piattaforme stellate non c’entrano niente.
  • Il bersaglio per le frecce – – Per la serie dei “classici”, un problemini preso da “Puzzling Times and Solvamhall Castle”.
  • Un dì vedremo… – Se il PM precedente era abbastanza tosto, questo è pure peggio. Computazione quantistica, siore e siori, e buon pro vi faccia.
  • Buon Compleanno Thomas – Esiste, ma non è molto famoso, un Thomas Muir matematico. Esiste, ma non è matematico, un Thomas Muir che è famoso e dalla vita sorprendente. Naturalmente questo “compleanno” (titolo originale “Pericolo pubblico numero uno”) parla di tutti e due.
  • Buon compleanno Jean-Louis – …e anche questo sembra un compleanno, ma lo è per modo di dire: è il link che riporta al compleanno di Cramer, nel giorno del compleanno di Giovanni Ludovico (Jean-Louis) Calandrini.
  • La foresta del massimo disordine – Ci risiamo: post istituzionale dei soluzione del problema pubblicato su “Le Scienze” di Agosto. Si parla di rondini che si posano sugli alberi (tutti i lettori sapevano che le rondini non si posano mai sugli alberi, noi invece no…) che vengono spaventate da una saggia micia nera.
  • Testa e Croce bendato – Per la serie Quick&Dirty, uno degli indovinelli.

Roberto Zanasi continua i suoi dialoghi riguardo ai piani proiettivi, e stavolta mette in campo i sudoku (beh, non proprio) ed Eulero. In Il problema dei 36 ufficiali di Eulero si indaga sull’esistenza dei quadrati greco-latini.


Gianluigi Filippelli arriva all’ultimo minuto con una serie di post sparsi per blog vari:

Iniziamo con DropSea. Per la serie de I rompicapi di Alice:

  • Dalla Terra alla Luna: due rompicapi lunari di Samuel Loyd proposti nei Passatempi matematici di Martin Gardner
  • C’è posto sull’ascensore?: formulato da George Gamow e Marvin Stern nel 1958, il paradosso dell’ascensore, come molte altre curiosità matematiche, diventa famoso proprio grazie a Martin Gardner. Vediamo come i matematici hanno affrontato la questione.

Per la serie de Le grandi domande della vita:

  • La distanza dalla Luna: dopo aver chiarito come si è misurata la distanza Terra-Luna nel corso dell’ultimo mezzo secolo, ecco la risoluzione di un’equazione trigonometrica e la risposta a come sia possibile che gli auricolari si annodano sempre. Ovviamente c’è dietro un modello matematico!
  • La Luna, Marte e i triangoli: altro articolo a tema lunare. Questa volta vediamo dal punto di vista trigonometrico cos’è il diametro angolare. Inoltre la formula per contare i triangoli in una particolare figura che continua a girare per il web e una piccola dimostrazione sui numeri primi.

Inoltre:

  • Per la serie dei Ritratti, Gianluigi ha iniziato la pubblicazione del trittico di protagoniste di Hidden figures. Fino a ora sono usciti Mary Jackson e Katherine Johnson.
  • L’Italia e la regola del 12: a partire da un articoletto calcistico apparso su un Topolino estivo, un piccolo esame delle presenze delle nazionali nella final four dei mondiali di calcio dell’era moderna. La conclusione è che c’è solo una nazionale a essere stata presente nelle fab4 quasi regolarmente. E non è l’Italia.
  • Visto l’inizio della scuola, anche se non a stretto argomento matematico, Gianluigi segnala anche Numb3rs: essere insegnanti () dove, con un piccolo commento introduttivo, propone una citazione relativa a uno dei mestieri più difficili del mondo.

Sul Caffè del Cappellaio Matto invece un paio di recensioni Topoline e i supereroi:

  • Su Missione zione gli aspetti logici e matematici della ricerca sullo scomparso zio Paperone che ha appassionato i lettori per tutto luglio.
  • Su Il Computer a Q-Q un breve approfondimento sulla computazione quantistica.
  • Quest’ultima è in parte presente anche su 7, il numero perfetto, articolo ispirato a un’avventura quantistica della Justice League di fine anni Novanta.

Infine, che ho scritto io in questi due mesi? Un po’ di roba.
Cominciamo dal Post.

Sulle Notiziole, abbiamo due post nella categoria Povera matematica:

Per le recensioni librarie, parecchia roba:

Infine, i quizzini della domenica: Che ora è?Quasi sempre mentitoreGira l’asinoMiniscacchieraPitagoraSomme armonicheConta i triangoliTangenteDue quadrati inscritti.


Come post scriptum, segnalo La congettura di Pólya di Francesco Polizzi. Facciamo due pile di numeri, O ed E; un numero naturale finisce in O se ha un numero dispari (odd) di fattori primi, e finisce in E (even) se i suoi fattori primi sono in numero pari. Dunque 2 e 3 vanno in O, 4 (2×2) in E, 5 in O, 6 in E e così via. Pólya congetturò che se ci fermiamo a un n qualsiasi, la pila O contiene sempre più numeri della pila E. Sarà proprio così?

Per settembre è tutto: appuntamento a ottobre al Caffè del Cappellaio Matto con il tema “la matematica delle meraviglie”! (ma la matematica è tutta una meraviglia, dov’è il problema?)

Carnevale della matematica #130

“canta allegro tra i cespugli”
(Poesia gaussiana)

logo-carnevale_matematica
Benvenuti all’edizione numero 130 del Carnevale della Matematica! Il tema del mese, “notte prima degli esami”, era stato scelto apposta per fare andare tutti fuori tema 🙂 Era giusto un anno che il Carnevale non passava da queste parti, e visto che ormai luglio e agosto vengono saltati a piè pari siamo tornati ad avere un’edizione multipla di 10. Il 130 non è un numero interessante come il 120: sapere per esempio che è 23-gonale non credo che cambi la vita a nessuno; il sapere che è il più grande numero non esprimibile come somma di al più quattro numeri esagonali la cambierà a ben poche persone. Però qualche proprietà matematica inusuale ce l’ha comunque, come dice Wikipedia. Per esempio, è un numero sfenico, cioè dato dal prodotto di tre primi distinti (2·5&è parte di otto terne pitagoriche: (32, 126, 130), (50, 120, 130), (66, 112, 130), (78, 104, 130), (130, 144, 194), (130, 312, 338), (130, 840, 850), (130, 4224, 4226); è l’unico numero intero pari alla somma dei quadrati dei suoi primi quattro divisori: 1² + 2² + 5² + 10² = 130; è un palindromo in base 4 (2002), in base 8 (202) e in base 12 (AA); ma soprattutto è un numero felice, pur essendo evil (“parassita”? “perfido”?) Fuori dalla matematica, l’Hercules C-130 è un aereo militare da trasporto mentre cinquant’anni fa la Fiat 130 era l’ammiraglia della casa torinese; i 130 all’ora sono il limite massimo in autostrada (tranne che per alcuni, direi); il 130 è il numero telefonico dell’assistenza Tiscali.

Dioniso ci manda la sua “cellula melodica ossimorica”: l’allegria caratterizzata da un’armonia minore. Immagino avrà pensato a Losing My Religion dei R.E.M….

Passiamo finalmente ai contributi! Cominciamo con Dioniso, che continua a dedicarsi alla filosofia della matematica: un argomento perfetto per l’ultimo ripasso :-). In Sull’irragionevole efficacia della matematica nelle scienze naturali riprende “La matematica degli dèi e gli algoritmi degli uomini” di Paolo Zellini riprende un brano in cui l’autore mostra come l’irragionevole efficacia dipenda in fin dei conti dal fatto che noi abbiamo modellato la matematica in maniera algoritmica; in Il concetto di infinito esiste in un universo trascendentale o solo nella mente umana? Dioniso parte da “What is Mathematics, Really?” di Reuben Hersh per cui tutti i concetti matematici sono inventati dagli esseri umani, a differenza di quanto affermano i platonisti: l’esempio fatto stavolta è l’infinito.

Il Vero Matematico e l’aspirante tale di Roberto Zanasi aka Zar hanno due dialoghi sulle geometrie finite che (spoiler) permetteranno di spiegare la realizzazione di un gioco da tavolo: Geometrie – cosa sono le geometrie finite, dove si mostra la bellezza della simmetria che supera le vetuste considerazioni geometriche, e Convergenze parallele – legame tra piani affini e piani proiettivi, dove si rompe la simmetria.

I contributi di Mauro Merlotti sono davvero interessanti. In Wallis e la Quadratura del Cerchio Mauro infatti riesce a quadrare un cerchio! O meglio, parte da un quadrato e ritaglia dei pezzi per ottenere un’area equivalente al cerchio. Lo stesso succede con un cubo e una sfera. Dov’è il trucco? Beh, mica ve lo svelo io: dovete leggere il suo post! Non pago di limitarsi al mondo reale, Mauro ha proseguito con La Quadratura del Cerchio in n-Dimensioni, che come dice il titolo mostra (ma non dimostra, come ricorda nel testo) che un procedimento simile si può applicare a un qualunque numero di dimensioni.

Passiamo ad Annalisa Santi, che spiega così il suo non avere seguito il tema: «La “notte prima degli esami” ho fatto bisbocce e quindi il giorno dell'”esame di italiano” sono andata fuori tema!» Ci fidiamo? Ad ogni buon conto, i suoi due post andrebbero bene per l’esame di storia dell’arte, visto che hanno preso spunto dalla recentissima mostra collettiva d’arte contemporanea “Arte e Salute alle radici della prevenzione”, al grattacielo Pirelli a Milano a cura di Francesca Bianucci e Chiara Cinelli. In “Codice binario, tra arte e matematica” Annalisa parte da un quadro di M&G Redaelli che le dà l’occasione per chiedersi se l’ideazione del sistema binario si debba davvero a Leibniz, o se sia forse più corretto attribuire questa ideazione al grande “Magnus” Juan Caramuel. In “Uno, nessuno e 95 miliardi”, un quadro di Alberto Pigato e Simona Lombardo, dà lo spunto per parlare di combinatoria e per raccontarne, anche se un po’ sinteticamente, l’excursus storico.

Leonardo Petrillo si dedica alla geometria: in Il sistema assiomatico di Hilbert per la geometria riassume di un interessantissimo passo tratto da un libro dedicato alla figura di Hilbert, spiegando in particolare il sistema assiomatico per la geometria fondato dal grandissimo matematico tedesco.

I Rudi Matematici questo mese sono telegrafici: dobbiamo preoccuparci? Stanno studiando troppo? Ad ogni modo ci offrono:

Un altro gruppone di contributi arriva da Davide Passaro di Math is in the Air:

Che arriva invece da MaddMaths!? Troppa roba, e per fortuna che Roberto Natalini ha detto che ha selezionato “le più adatte” 🙂 (gli è che loro, a dispetto del nome, sono matematici seri…)

  • I librini di MaddMaths!: Rudi Mathematici – Una cosa divertente che rifaremmo ancora – Da oltre vent’anni Michele Emmer organizza a Venezia dei convegni di Matematica e Cultura, che qualche anno si chiamano “Imagine Math”. Quest’anno ad assistere all’evento c’era due inviati molto speciali, ossia Rudy d’Alembert e Piotr Rezierovic Silverbrahms (alias Rodolfo Chierico e Piero (o Pietro?) Fabbri), che insieme formano due terzi del gruppo Rudi Mathematici. Sfidati dal coordinatore supremo di MaddMaths! in singolar tenzone, hanno prodotto per noi un reportage abbastanza completo del convegno (o almeno di quello che loro hanno visto). Ne è nato il primo librino (digitale) di MaddMaths! dal titolo “Una cosa divertente che rifaremmo ancora”, che per dimensioni compete con il testo originale che tutti avrete riconosciuto (e in caso contrario, cominciate a leggere e saprete tutto). Nel post trovate i link alle versioni digitali del testo (in epub, azw3 e pdf) da scaricare, la prefazione di Roberto Natalini e sotto ancora la versione pdf da leggere online. Buona lettura!
  • Donne per la Matematica, Camerino, 7 Maggio 2019: un reportage – Nel pomeriggio del 7 Maggio si è svolta l’iniziativa “Donne per la Matematica”, ospitata dall’Università di Camerino. Pubblichiamo un breve resoconto dell’evento.
  • Moltiplicazione, ma quanto mi costi?? – Recentemente è apparso un articolo che contiene un risultato di grande rilievo sulla complessità computazionale di un problema classico: la moltiplicazione di due numeri interi di n cifre. Ce ne parla Fabio Di Benedetto dell’Università di Genova.
  • Il Problema Isoperimetrico. Atto Primo Dopo una lunga pausa, la quinta puntata della rubrica “Uno sguardo oltre la superficie“, a cura di Giuseppe Tinaglia. Uno spazio dove si osserva la geometria che ci circonda, ma anche oltre. Questa volta si parla del problema isoperimetrico.
  • Corso SMII “Trasferimento delle Tecnologie Matematiche per l’Innovazione” Lo Sportello Matematico per l’Innovazione e le Imprese sta organizzando un corso in Trasferimento delle Tecnologie Matematiche che avrà luogo in modalità intensiva durante cinque giornate dal 29 luglio al 2 agosto 2019 presso l’Istituto per le Applicazioni del Calcolo del CNR a Roma.
  • Le gare di classe di Matematica Senza Frontiere – Un paio di settimane fa Nicola Parolini è stato invitato da Annamaria Gilberti, referente nazionale di Matematica Senza Frontiere, ad intervenire a Monza alla gara conclusiva della competizione che quest’anno aveva come tema la Matematica e lo Sport. È stata una bella giornata in cui ha potuto vedere classi di tante diverse scuole secondarie di secondo grado lavorare insieme con passione attorno a quesiti matematici legati in vario modo al tema Sport. Per questo Nicola ha chiesto ad Annamaria di raccontare a MaddMaths! la sua pluriennale esperienza con questa competizione.
  • I delfini delle Eolie – Raccontare la matematica che sta sotto la realtà – È appena stato pubblicato da Zanichelli “I delfini delle Eolie, i battiti del cuore, i motori di ricerca – Modelli matematici per comprendere, simulare, esplorare”, di Alfio Quarteroni e Paola Gervasio.
  • Open Access: opportunità o minaccia? – Pubblichiamo un documento a cura dell’Unione Matematica Italiana che ha lo scopo di informare la comunità matematica della modalità con cui la commissione europea e le riviste commerciali stanno operando, per realizzare un modello di accesso aperto alle pubblicazioni scientifiche. Oltre a descrivere alcuni dettagli tecnici, si mettono in risalto quali sono i rischi che a breve termine (gennaio 2020) potranno investire i ricercatori e le istituzioni scientifiche.
  • È (finalmente) uscito Archimede 1/2019 – Con un notevole ritardo rispetto alle attese (doveva essere pronto agli inizi di aprile) appare infine il n. 1/2019 della rivista Archimede. Qui il sommario del direttore Roberto Natalini.
  • Si sono aperte le iscrizioni per il Grande MathsJam Annuale – Come previsto dal profeta Daniele Aurelio nel suo articolo su MaddMaths! ad aprile “Where the maths things are, reportage speciale dal Grande Jam“, le iscrizioni per il Grande MathsJam Annuale si sono aperte pochi giorni fa. CI spiega meglio in cosa consiste il solito Adam Atkinson.
  • Edufin@Polimi: portare l’educazione finanziaria nelle ore di matematica – La mancanza di educazione finanziaria è un problema che riguarda larga parte della popolazione del nostro paese. L’azione del progetto EDUFIN@POLIMI, sviluppato dal Qfinlab, il laboratorio di Finanza Quantitativa del Dipartimento di Matematica del Politecnico di Milano, si inserisce in questo contesto puntando a completare l’offerta rispetto agli interventi già in essere a livello nazionale. Giulia Bernardi, assegnista di ricerca presso il Qfinlab ci racconta la sua esperienza su campo.
  • Anche le api sono matematiche! Le api si rivelano sempre più brave in matematica, in particolare secondo un recente studio condotto da un gruppo di ricerca internazionale australiano-francese, saprebbero associare quantità numeriche a rappresentazioni simboliche, notizia che è stata ripresa da molti siti e giornali. Tale capacità era stata già stata rilevata in altre specie animali come scimpanzé, pappagalli, piccioni, ma per la prima volta viene documentata la possibilità di addestrare degli insetti, e quindi degli invertebrati, in tal senso. Maria Mellone commenta la notizia.

Gianluigi Filippelli ci manda infine tanti contributi, soprattutto legati a Leonardo da Vinci di cui quest’anno ricorre il cinquecentennale della morte. Per la serie de I rompicapi di Alice, Il movimento secondo Leonardo: dove si esaminano gli studi di Leonardo da Vinci sulla forza d’attrito e sulla geometria degli ingranaggi ottimali; per la serie Le grandi domande della vita, Vita da astronauti, dove tra le caratteristiche necessarie per diventare astronauti e quello che mangiano sulla Stazione Spaziale Internazionale ecco un esame matematico e fisico della così detta microgravità; per la serie dei Wikiritratti, la biografia di Nicholas Metropolis, fisico teorico greco che, tra le altre cose, ideò il metodo Monte Carlo insieme con Stanislaw Ulam. Seguono poi la recensione de <em>L’infinito cercare, autobiografia di Tullio Regge; Analogie spaziotemporali: un breve articoletto su un’alternativa alla classica visualizzazione delle deformazioni spaziotemporali dovute ai teli elastici (o ai diagrammi di Flamm); Senza parole: riflessione e rifrazione: uno schema geometrico per vedere i due effetti fisici; I segni satanici di Gerberto: un articoletto dedicato all’introduzione delle cifre arabe in Europa; Il limite di Chandrasekhar: breve articoletto sulla formula di Chandrasekhar per determinare la massa limite per una stella per diventare un buco nero o meno.
Ma Filippelli scrive anche sul Caffé del Cappellaio Matto, dove c’è una serie di cinque articoli dedicati a Il grande gioco geniale, storia uscita in cinque puntate su Topolino come omaggio a Leonardo da Vinci. Dei cinque articoli, solo il quarto, Le caricature di Leonardo, è esplicitamente dedicato alla matematica con il modo in cui il genio italiano ha affrontato il problema della quadratura del cerchio, ma alla fine vale la pena segnalarli tutti e cinque insieme, ricchi come sono di curiosità leonardesche: Il grande gioco di Leonardo da VinciIl quesito dei gesti di Leonardo da VinciLeonardo a MilanoLe caricature di LeonardoUn compleanno nel segno di Leonardo.

Come tradizione, si termina con i contributi di chi ospita il Carnevale, vale a dire il sottoscritto. Non preoccupatevi, non sono troppi. Qui sul Post ho scritto Interpretabilità, una riflessione sugli algoritmi di Machine Learning e la loro oscurità. Sulle Notiziole ho invece il solito gruppone di quizzini della domenica, questo mese Conta i rettangoliI due rettangoliSuccessioneDue quadrati e un rettangolo (sì, è un mese rettangoloso); un’unica recensione ma pesante, Che cos’è la matematica? di Courant e Robbins con integrazioni di Ian Stewart (risente degli anni, ve lo dico subito, e non è stato digitalizzato così bene); un post di povera matematica (politica, guarda che strano), Sommare IVA e IRPEF.

E anche stavolta è tutto. Ci rileggiamo a settembre, chissà dove 🙂

Carnevale della matematica #110

“canta tra i cespugli all’alba”
(Poesia gaussiana)

logo-carnevale_matematica
Benvenuti all’edizione numero 110 del Carnevale della Matematica! La sua cellula melodica, preparata come sempre da Dioniso, è un bell’accordo maggiore: diciamo che se fosse stato per me l’avrei fatto terminare con la tonica, come capirete in fondo 🙂

Qualche proprietà del numero 110: è oblungo (cioè della forma n(n+1), sfenico (prodotto di tre primi) e somma di tre quadrati consecutivi (5²+6²+7²), ed è un minimo locale della funzione di Mertens, che con esso raggiunge per la prima volta il valore -5. Scritto in base 10, è un numero di Harshad (divisibile per la somma delle sue cifre) e colombiano (non può essere scritto come la somma di un intero minore di esso e della somma delle cifre di quel numero); infine è un numero congruente, perché è l’area di un triangolo rettangolo a lati razionali (i cateti sono 33 e 20/3, l’ipotenusa 101/3). In informatica lo troviamo nel numero RSA-110 (è già stato fattorizzato, troppo piccolo…), nella porta TCP da contattare per avere una connessione POP3 (tanto ormai tutti usano IMAP…) e nella regola 110 per gli automi cellulari, la più complicata possibile (nel senso che è equivalente a una macchina di Turing completa, non che sia complicata da spiegare: in altre parole, ha un comportamento emergente). In chimica è il simbolo del darmstadtio (oh, il suo isotopo principale ha una semivita di ben 12 secondi, lo si riesce quasi a vedere); in religione è la durata della vita di Giuseppe (il figlio di Giacobbe) e di Giosuè; negli USA è la tensione della corrente elettrica; da noi è il massimo voto di laurea.

Bene, è ora di passare ai contributi! Non avendo io scelto un tema per il mese, per una volta nessuno è potuto andare fuori tema, sfruttando le mirabolanti proprietà dell’insieme vuoto. Ma prima forse volete rispondere a questo questionario su quali siano le frasi che rispecchiano di più cos’è la matematica… (io ho votato 6,12,15 con una menzione onorevole per 11)

Mr Palomar ci manda due contributi sui progetti che sta portando avanti da parecchio tempo. Il primo è I Premi Turing: John Warner Backus, e racconta dell’informatico noto per essere la metà della forma di Backus-Naur; ma dal punto di vista matematico risulta più importante per essere stato il direttore del progetto che portò alla creazione del FORTRAN. Il secondo, Gli enigmi di Coelum: I dadi di Platone, parte dai solidi platonici per finire ai palloni da calcio (sempre lì finisce il buon Mr Palomar). Ha poi scritto Le auree sonate per pianoforte di Mozart: L’argomento è la presunta presenza della sezione aurea nelle sonate per pianoforte di Mozart, questione che è stata analizzata dal matematico americano John Putz e che viene riassunta nell’articolo.

Dioniso in queste settimane è impegnato con il suo libro cartaceo che è stato pubblicato il mese scorso. A parte vedere il proprio libro all’ottavo posto della classifica “Bestseller in Matematica” di Amazon, solo 5 posizioni dopo Malvaldi e una posizione prima di Penrose, una sensazione impagabile 🙂, ci segnala due recensioni. Una nuova bella recensione de “Il mistero del suono senza numero” è stata pubblicata sulla rivista EDIMAST – Esperienze Didattiche con Matematica, Scienze e Tecnologia; dopo averlo letto e riletto, l’amico Nino Ponzio ha anche scritto un’interessante recensione con domande aperte (a cui Dioniso ha poi risposto).

Davide Passaro segnala poi i molteplici contributi da Math is in the Air (se appaiono piccoli è colpa del CSS del Post 🙂 ):

  • Un’intervista di Davide Passaro ad Alessandro Della Corte e Lucio Russo sul loro libro “La bottega dello scienziato. Introduzione al metodo scientifico“. Si parla del loro libro a partire da spunti molto interessanti come il problema della comunicazione scientifica, Popper la la sua falsificazione e i limiti delle teorie, l’ottica geometria e la sua importanza, il “gioco della vita” di Conway e la ricerca di invarianti e l’estinsione dei dinosauri spiegata dal fisico Álvarez e le bombe alla crema.
  • Un post di Enrico Degiuli dal titolo “Le macchine pensano? una riflessione a 20 anni da Kasparov-Deep Blue“, dove si parte dalla sfida fra il grande campione di scacchi Kasparov e il computer della IBM e la si confronta con la sfida svoltasi nel 2016 fra il campione di Go Lee Sedol e AlphaGo stato sviluppato da Google Deep Mind, che a differenza di Deep Blue è stato programmato secondo l’approccio del Machine Learning.
  • Pierandrea Vergallo parte dalla seguente domanda: “È possibile proiettare la terra su di un solo foglio?“. Visto che la terra non è piatta la risposta è meno banale di quello che sembra; Pierandrea, partendo dal concetto matematico di proiezione e passando per la geometria non euclidea, ci aiuta a capire il problema.
  • Rosario Portoghese, invece, prendendo spunto dalla sua esperienza lavorativa (noi siamo un blog dedicato alla matematica applicata e teniamo fede a questo impegno) ci parla della verifica di una ipotesi con un articolo dal titolo “Verifica di una ipotesi, un caso sfortunato“. Si parla di un caso concreto di un processo di produzione composto da tre fasi di lavorazione in ognuna delle quali il prodotto subisce delle trasformazioni: si mettono alla prova le vostre competenze di statistica!
  • Un tema sul quale molti nello staff sono fissati (ma per la verità, visto la quantità di investimenti che ci stanno facendo Google, Facebook, Amazon e Apple giusto per citarne alcuni, sembra che siamo in buona compagnia): Pasquale Napolitano ci parla in un post molto introduttivo e divulgativo di Intelligenza Artificiale e implicazioni pratiche.
  • Infine Andrea Capozio ci aiuta a sorridere con la matematica mediante un post della rubrica umoristica MATEcomio dal titolo “L’arte della semplificazione“.

Torniamo a contributi inseriti senza lista (grande? piccola? Chi lo sa) con Zar, che per mostrare come i matematici in realtà non siano così difficili da capire ha scritto il post Das ist nicht Mathematik, das ist Philosophie. Non preoccupatevi, il post è in italiano, e spiega qual è l’errore di Steiner nella dimostrazione del teorema di Didone.

Annalisa Santi, dopo un buon caffè, manda un post che nasce dalla sua recentissima visita guidata al museo MUMAC (Museo della Macchina del Caffè – Cimbali – Binasco MI): Il caffè perfetto… matematico: l’occasione ha attirato la sua curiosità per il “mondo del caffè” e per una ricerca di un team irlandese volta a cercare i parametri ideali per la pressione e temperatura che fornirà una tazzulilla favolosa.

Torniamo ai listoni con MaddMaths!.

  • Il 20 maggio al Salone del libro di Torino è stato presentato il nuovo albo Comics&Science: The Babbage Issue, contenente tra l’altro una storia a fumetti di Alfredo Castelli e Gabriele Peddes. Comics&Science è una collana di CNR Edizioni ideata da Andrea Plazzi e Roberto Natalini.
  • Un articolo di Silvia Benvenuti, Genio e regolatezza: le passioni matematiche di Salvador Dalí, sulla mostra Dalí Experience, allestita presso Palazzo Belloni a Bologna e da poco conclusa, mostra che sicuramente sarà stata apprezzata dagli amanti della matematica.
  • Dal 2 al 7 maggio (in parziale sovrapposizione con le Finali Nazionali delle Olimpiadi di Matematica a Cesenatico) si è svolta a Ohrid (Macedonia) la trentaquattresima edizione delle Balkan Mathematical Olympiad. Le BMO sono una competizione internazionale alla quale l’Italia è ormai da vari anni invitata come nazione ospite. Il reportage è a cura di Luigi Amedeo Bianchi (prima e seconda parte)
  • Un’intervista di Maya Briani ad Alessandro Carlotto, dell’ETH di Zurigo, che si occupa di geometria differenziale: a livello più specifico, di “geometric variational problems” ovvero questioni varie inerenti oggetti geometrici che minimizzano (o massimizzano) una certa quantità.
  • Pierre Berger è un ricercatore del CNRS francese. Lavora presso il Laboratoire d’Analyse, Géométrie et Applications dell’Université Paris 13. Di recente ha dimostrato alcuni teoremi che indicano che l’evoluzione di certi sistemi è scarsamente modellizzata dalle statistiche. François Béguin gli ha chiesto di spiegarci questi risultati. L’articolo I sistemi fisici sfuggono alle statistiche?, apparso il 5 maggio 2017 sul sito Images des Mathématiques, è qui pubblicato con il permesso del sito e dell’autore; la traduzione è a cura di Fabio Cristiani.
  • Quante sono le geometrie? Risposte ad un lettore. Il nostro lettore FABRY2 ci scrive in un commento: “Ho letto in un libro (divulgativo) che in dimensione 3 ci sono “otto diversi tipi di geometrie”. In dimensione 2, tre diversi tipi di geometrie. L’ultimo è chiaro. Non riuscendo a immaginare cosa ci possa essere dopo le 3 geometrie, chiedo se per piacere, qualcuno può dirmi qualcosa di più in merito. Grazie. Fabrizio.” A questa domanda risponde Maria Dedò, dell’Università di Milano.
  • Novità sul movimento spiraleggiante degli spermatozoi. Si è osservato che gli spermatozoi umani seguono traiettorie regolari, ma molto più complesse, aventi la forma di eliche spiraleggianti. Un nuovo modello matematico cerca di spiegare meglio il moto di questi importanti microorganismi. Ne abbiamo dato la notizia qui e vi proponiamo un approfondimento di Antonio DeSimone, grande esperto del movimento “dei piccoli nuotatori”.
  • Poche settimane fa Alfio Quarteroni si è aggiudicato un nuovo importante finanziamento da parte dell’European Research Council, un ERC Advanced Grant da 2.35 milioni di Euro con i quali svilupperà nei prossimi 5 anni il progetto iHEART – An integrated heart model for the simulation of the cardiac function. Abbiamo chiesto direttamente da lui di cosa si tratta. Intervista a cura di Nicola Parolini.
  • Continuano le ripetizioni di Davide Palmigiani. Nella puntata 15: “Calendario” si parla di calendari e di date.
  • Nasce la nuova rivista “Didattica della matematica. Dalla ricerca alle pratiche d’aula”, realizzata dal Dipartimento formazione e apprendimento, Scuola universitaria professionale della svizzera italiana (SUPSI), in collaborazione con Repubblica e Cantone Ticino, Dipartimento dell’Educazione, della Cultura e dello Sport (DECS). La rivista è pensata per ricercatori in didattica della matematica e insegnanti attivi nella scuola. Riportiamo l’editoriale della direttrice della rivista Silvia Sbaragli, responsabile Centro competenze didattica della matematica.
  • Research in Action (RiA) è il nome, un po’ ambizioso, di un progetto di alternanza scuola-lavoro del Liceo Scientifico G.B. Grassi di Latina proposto agli alunni di una classe quarta. Ne parla l’animatore della proposta, il Prof. Gualtiero Grassucci.

Gianluigi Filippelli in questo periodo si dedica alle Grandi Domande della Vita (non so se c’entrino anche l’Universo e Tutto Quanto). In Una storia illuminante, un post dedicato soprattutto alla velocità della luce, gli inserti matematici sono dedicati alle soluzioni di un’equazione radicale e al segno del ±. In Zero in condotta, come intuibile dal titolo, protagonista è lo 0, in particolare lo 0! e la funzione Gamma di Eulero. Nel post è poi presente un breve inserto dedicato alla matematica delle equazioni di Navier-Stokes e alla fisica della caduta libera. La protagonista di La perfezione di Olinto è la sezione aurea, cui si affianca il calcolo dell’area del triangolo equilatero massimo inscritto dentro un cubo. Per la fisica sono presenti il Premio Nobel 2010 Andre Geim e la più popolare equazione di Einstein.
Seguono la recensione de Le argentee teste d’uovo di Fritz Leiber, con un’introduzione storica sulle reti neurali, e L’evoluzione di Zenone nel tempo, con un aggiornamento sullo studio matematico del paradosso quantistico di Zenone formulato per la prima volta da Alan Turing.

I Rudi Mathematici vivono ormai nel ritardo: li capisco perfettamente. Ecco i loro post del mese:

  • Si comincia con un PM del Capo, o per meglio dire con una puntata di un lungo e frazionato PM del Capo, che indaga, come il titolo fa intuire, alcuni misteri dei giochi: Rien ne va plus 5 – Un par di pari e Dominare i cespugli. In questa, brilla la maestà di Adders and Ladders, gran bel gioco per tutte le età, e con un titolo così bello in inglese che è triste doverlo tradurre in altre lingue. [nota di .mau.: a dire il vero il nome inglese ufficiale è Snakes and Ladders: se lo cambi in inglese, allora puoi anche scegliere la versione italiana “Scale e scaglie” 🙂 ]
  • All’origine, nel lontano 2011, questo strano duplice compleanno si intitolava “Il nazista e l’ebreo”, e non per niente partiva col discettar di Stalingrado. La storia incrociata di Lipa Bers e Paul Teichmuller è oggettivamente curiosa.
  • Quest’altro compleanno (ne toccano due, a questo Carnevale), si intitolava invece guccinianamente “Fra Piumazzo e Sant’Anna Pelago”, e fra quei due luoghi ameni non doveva essere impossibile incrociare Regiomontano.
  • In brillante ritardo anche l’istituzionale post di soluzione del problema pubblicato sulla cartacea “Le Scienze”, stavolta: dovrebbe uscire prima che il foglio del calendario si giri, e invece lo hanno fatto una buona settimana dopo.

Per quanto riguarda me, poca roba. Qui sul Post ho scritto La piastrella di Kürschák, una dimostrazione alternativa per calcolare l’area di un dodecagono inscritto in una circonferenza. Sulle Notiziole ho il solito gruppetto di recensioni librarie: Il mistero del suono senza numero (sì, l’ho recensito anch’io…), Biscotti e radici quadrate (ma perché questo titolo?), Fisica e filosofia (secondo me Heisenberg coglie davvero sul segno), Computer e cervello (ma anche il buon Janós…). Ho il solito gruppetto di quizzini: Distanze, Buste, Il numero mancante. Infine un post, L’antiepidemia, per la serie “povera matematica”.

Bene, è ora che io vi spieghi perché avrei trovato più corretto che la cellula melodica avesse un accordo discendente, per terminare con una bella cadenza. La prossima edizione del Carnevale, la numero 111, non sarà il 14 luglio. Dopo nove anni, ci pigliamo una vacanza estiva e ricominceremo (spero…) a settembre. Per il momento vi lascio con una barzelletta matematica, inviatami da Paolo Marincola.

Gli scienziati non faranno mai tanti soldi quanto i dirigenti.
Dimostrazione:
Partiamo dai due ben noti postulati

  1. Conoscenza è potenza;
  2. Il tempo è denaro.

Sappiamo che potenza = lavoro/tempo. Sostituendo conoscenza=potenza e tempo=denaro, ricaviamo conoscenza = lavoro/denaro, o anche denaro = lavoro/conoscenza.
Pertanto, al tendere della conoscenza a zero, il denaro tende a crescere all’infinito, indipendentemente dal lavoro fatto purché non nullo. In definitiva, meno conosci più guadagni.