Nel 1956 Richard Bellman fece questa domanda, qui da me parafrasata: “Vi trovate in una foresta di cui sapete la forma e vi siete persi. Quanto è lungo il più breve percorso che nel caso peggiore vi porti fuori dalla foresta?” Per la cronaca, Bellman è stato uno dei guru della programmazione dinamica, quindi che abbia proposto un problema di ottimizzazione è normale. È anche chiaro che se fosse vissuto nella pianura padana e non in America il problema sarebbe stato ambientato col nebiun, che è molto meglio di una foresta per non sapere dove ci si trova: ma ormai il problema è noto come Bellman’s lost in a forest problem e ce lo teniamo così.

Il problema sembra semplice, ma non lo è affatto. Prendiamo per esempio un quadrato, per comodità [0,1]×[0,1]. Se sapessimo le coordinate dove ci troviamo e avessimo una bussola, potremmo uscire dalla foresta percorrendo un tratto di lunghezza al massimo 0,5 parallelo a un lato, come a sinistra nella figura. Se non conoscessimo le nostre coordinate ma avessimo la bussola, potremmo uscire percorrendo un tratto di lunghezza al massimo 1, come a metà in figura; magari andremmo nella direzione opposta a quella più vicina ma comunque usciremo. Se non sappiamo proprio nulla? Sicuramente la distanza minima nel caso peggiore è al massimo $\sqrt{2}$, come a destra in figura, ma magari c’è un modo più furbo… E invece no, si dimostra che per tutti i poligoni “grassi” (come spiegato qui) la soluzione ottimale è il diametro della figura. Questo vale tra l’altro per tutti i poligoni regolari dal quadrato in su (e per il cerchio, cosa che però si era già dimostrata in altro modo). E per il triangolo equilatero? Il testo che ho appena citato afferma che A. S. Besicovitch ha congetturato e Patrick Coulton e Yevgenya Movshovich hanno dimostrato che un certo percorso a zig zag in un triangolo equilatero di lato 1 ha lunghezza inferiore a 1: per la precisione, $3 \sqrt{21}/14 ≈ 0.981981$. Esistono altre figure per cui si è calcolata la “lunghezza di fuga” minima, ma il problema non è ancora completamente risolto.
Il tutto serve a qualcosa? Secondo il matematico Scott W. Williams, è “un problema milionario”, nel senso che le tecniche che presumibilmente porterebbero alla risoluzione potrebbero essere riciclate per ottimizzare le soluzioni di problemi nella vita reale…

Domani ha 
Adrian ha detto di avere scritto questo libro per le sue nipotine, per mostrarle come le serie infinite possano arrivare a darci risultati inaspettati. Il testo in effetti è molto sparso, nel senso che soprattutto la prima parte, quella con l’esposizione delle serie, ha pagine quasi del tutto vuote.
Alla fine è stato trovato –
bLa scorsa settimana