La scorsa settimana ho parlato del principio dei cassetti e vi ho lasciato tre problemi. Se non siete riusciti a risolverli ecco qua come si fa.
I 15 cavalieri della tavola rotonda hanno pasteggiato un po’ troppo prima di sedersi a discutere, e quando si sono seduti nessuno di essi era seduto al proprio posto. Dimostrate che è possibile ruotare la tavola in modo che ci siano almeno due persone al posto corretto.
Per ciascun cavaliere calcoliamo di quanti posti in senso orario è spostato rispetto alla posizione che dovrebbe avere. Visto che sappiamo che nessuno è al suo posto, a ciascuno di loro sarà assegnato un numero da 1 a 14. Ma i cavalieri sono 15: per il principio dei cassetti due cavalieri devono avere lo stesso numero. Basterà allora ruotare la tavola in senso antiorario di quel numero di posizioni perché loro due siano al loro posto.
Se scegliete sei numeri interi tra 1 e 999 ce ne saranno almeno due la cui differenza è un multiplo di 5.
In questo caso il 999 è una falsa pista: quello che conta è che i numeri sono interi. Calcolate i resti modulo 5 dei sei numeri: possono essere solo 0, 1, 2, 3 e 4. Essendoci sei numeri e cinque possibili resti, per il principio dei cassetti due di essi devono avere lo stesso resto, e quindi la loro differenza sarà un multiplo di 5.
Avete una bilancia a due piatti e 28 monete, una delle quali è più pesante delle altre. Dimostrate che non è possibile trovare quale sia la moneta più pesante con tre pesate.
In questo caso si usa il principio dei cassetti in una forma leggermente diversa da quella standard. Ogni pesata ha tre esiti possibili: il braccio sinistro è più pesante, il braccio destro è più pesante, la bilancia resta in equilibrio. Qualunque combinazione di monete si scelga di pesare ci sarà la possibilità che la moneta più pesante sia in un gruppo di almeno dieci monete; nell’ipotesi migliore 27 monete possono essere assegnate a nove a nove ai tre esiti, ma la ventottesima creerà un gruppo da 10. Con lo stesso ragionamento la seconda pesata lascerà la possibilità che la moneta più pesante sia in un gruppo da 4, ed evidentemente la terza pesata non potrà trovare con certezza la moneta pesante perché gli esiti possibili sono solo tre. Attenzione: questo ragionamento non dimostra che sia sempre possibile trovare la moneta pesante in un gruppo da 27 (nella pratica lo è, ma occorre trovare un modo per suddividere le possibilità in modo uniforme tra i tre esiti), ma è semplicemente una dimostrazione di impossibilità.
Ultimo aggiornamento: 2024-01-06 17:15

Il mio amico Ugo mi segnala 
Se vi dicessi che ho scritto l’anno 2023 in una certa base e mi è venuto fuori 2441010, mentre il 2024 si rappresenta come 2441100, riuscireste a indovinare la base? Probabilmente no, a meno che non abbiate visto e studiato la vignetta qui a fianco. Ho infatti scritto i numeri in 


Il paradosso di Banach-Tarski è ben noto a chi ha studiato matematica. Quallo che succede è che è possibile tagliare una sfera in cinque parti secondo una certa regola, traslare questi “pezzi” che sono stati ottenuti, e ricavare due sfere identiche a quella di partenza. Dov’è il trucco? Beh, ce ne sono almeno due. Il primo è che i pezzi ottenuti sono una specie di polvere diffusa: tecnicamente si dice che non sono insiemi misurabili, e quindi non è in realtà fisicamente possibile crearli. Il secondo trucco è che è necessario usare l’assioma della scelta per poter creare questi pezzi; l’assioma della scelta è una di quelle proprietà che sembrano intuitive, ma che sfuggono a ogni tentativo di dimostrazione – non per nulla è un assioma… – e soprattutto possono portare a paradossi, come si vede. Però esistono risultati simili che non richiedono l’assioma della scelta, come vedremo.