Non vogliono spedirmi elettronica

Per una serie di eventi, ho dovuto comprare un Iphone ricondizionato per Jacopo e un nuovo laptop Asus ultraleggero per Anna.

Risultato 1: dopo che stamattina mi è arrivato un messaggio di sollecito per il bonifico (bonifico che avevo fatto venerdì e quindi aveva valuta odierna per loro), mi telefona ASUS dicendo che per problemi tecnici l’ordine è stato annullato e non dovevo fare il bonifico, che spero a questo punto mi rimborsino.

Risultato 2: mi arriva mail da DHL che dice che “mancano informazioni di consegna”: avevano solo l’indirizzo e per trovare l’interno dovevano cercare il numero di citofono. Peccato che nella mail che il mittente mi ha poi mandato ribadendo il problema il numero di citofono era correttamente indicato nella seconda riga del mio indirizzo. (Qui ho chattato con DHL, spero che adesso il numero di citofono sia finito sulla riga 1).

Ho una famiglia un po’ arrabbiata. Con me, ovvio.

Quizzino della domenica: Cifre tra i divisori

731 – aritmetica

I divisori di 114 sono 1, 2, 3, 6, 19, 38, 57, 114. Come vedete, al loro interno sono presenti tutte le cifre tra 1 e 9. Qual è il numero più piccolo che ha la questa proprietà? E se voleste avere anche lo 0?

123456789
(trovate un aiutino sul mio sito, alla pagina https://xmau.com/quizzini/p731.html; la risposta verrà postata lì il prossimo mercoledì. Problema dalla Chris Smith’s Maths Newsletter.)

@matematica

The Green-Eyed Dragons and Other Mathematical Monsters (ebook)

Alcuni dei problemi di questo libro non mi sono piaciuti più di tanto: si sa che io e l’analisi matematica non siamo mai andati troppo d’accordo. C’è però una caratteristica che secondo me è vincente: Morin entra nel dettaglio della risoluzione dei problemi, con modifiche possibili (i suoi “Remark”) e spiegazioni che non ho mai trovato in giro. Prendete per esempio il problema che dà il titolo al libro, che poi è una rivisitazione dell’indovinello classico sulla mutua conoscenza. Morin presenta quattro varianti, tutte diverse tra loro, dove in alcune la conoscenza di per sé non c’è nemmeno, ma entra in gioco indirettamente. Da questo punto di vista, direi che il libro è davvero ottimo, anche se per l’appunto non banale.

(David Morin, The Green-Eyed Dragons and Other Mathematical Monsters: 2018, pag. 208, € 5,36, ISBN cartaceo 9781719958370 – se acquistate il libro dal link qualche centesimo va a me)

Voto: 5/5

@matematica

Statistiche del sito per novembre e dicembre 2024

Anche stavolta due mesi al prezzo di un post.

Novembre: solito tran tran. Tralasciando i dati drogati di ottobre, faccio il confronto con settembre.

Visitatori unici 17.364 (-671)
Numero di visite 46.845 (+72)
Pagine accedute 160.907 (+2523)
Hits 325.900 (-3139)
Banda usata 4,14 GB (+0,66 GB)

Nessun giorno ha avuto meno di 1000 visite: il massimo è stato venerdì 29 con 2272, il minimo domenica 24 con 1214, la media è 1561.

Dicembre: più visite, meno byte.

Visitatori unici 20.293 (+2929)
Numero di visite 49.138 (+2287)
Pagine accedute 163.357 (+2450)
Hits 318.721 (-7179)
Banda usata 3,25 (-0,89 GB)

Nessun giorno ha avuto meno di 1000 visite: il massimo è stato venerdì 20 con 2331, il minimo giovedì 26 con 1255, la media è 1585.

Top 5 di novembre:

  1. Call center sanitari invasivi: 3583 visite
  2. Eupnoico: 861 visite
  3. Codice bianco all’Ikea: 701 visite
  4. Non un quizzino ma quasi: 645 visite
  5. OneDrive non si sincronizzava: 527 visite

Inoltre un post dall’archivio del Post oltre le 500 visite, romanaccio ha avuto 1278 visite e La prova del 9 543.

Top 5 di dicembre:

  1. Call center sanitari invasivi: 2602 visite
  2. Ma quanta acqua è cascata?: 707 visite
  3. Eupnoico: 661 visite
  4. Fare analisi di laboratorio in farmacia: 578 visite
  5. Il problema di Brocard: 540 visite

Altri tre post (più uno del backup del Post) sopra le 500 visite. Poi a href=”https://xmau.com/humour/romanaccio.html”>romanaccio ha avuto 1426 visite.

Query Google di novembre: abbiamo 4021 (-652) clic da mobile, 1383 (-64) da desktop e 79 (-19) da tablet. Ecco le prime 10 query (tra parentesi le impressions, per capire quanto la mia pagina sia piaciuta a chi cerca: più il rapporto è basso, meno sono stato ritenuto interessante).

622 (8098) 0278655540
154 (538) insulti in romano
114 (2259) paziente eupnoico
91 (280) teorema di futurama
84 (937) 02 78655540
83 (269) insulti romani
78 (1406) +39 02 78655 540
61 (877) codice bianco ikea
55 (279) 02 78655540 regione lombardia
43 (4924) prova del 9

Per dicembre abbiamo 3816 (-205) clic da mobile, 1310 (-73) da desktop e 78 (-1) da tablet. Le prime 10 query:

399 (4044) 0278655540
174 (532) insulti in romano
103 (294) insulti romani
75 (290) teorema di futurama
64 (2473) paziente eupnoico
51 (506) 02 78655540
50 (82) insulti romaneschi
33 (3477) prova del 9
32 (573) codice bianco ikea
32 (62) xmau

MATEMATICA – Lezione 49: La matematica del cervello

Ancora una volta abbiamo un volume della collana che tratta un problema inverso, cioè la ricerca della funzione “migliore” che dà l’output che possiamo misurare. In questo caso Alessandro Viani parla di quali tecniche si possono usare per scoprire quali parti del cervello vengono attivate da uno stimolo. Penso che concorderete con me che una misurazione diretta non è molto praticabile, e quindi dobbiamo accontentarci di misure indirette, come gli elettroencefalogrammi o i magnetoencefalogrammi (che sarebbero più precisi, ma sono molto più difficili da tarare perché il campo magnetico cerebrale è davvero minuscolo). Vedremo innanzitutto come applicare le tecniche classiche usate in questi casi, vale a dire il metodo della discesa del gradiente; ma vedremo anche come il problema matematico non può essere trattato in maniera isolata ma deve tenere conto delle nozioni di fisiologia che per così dire lo indirizzano nella direzione corretta. Altro che matematica scollegata dal mondo reale!

Veronica Giuffré ci parla poi di Norbert Wiener, bambino prodigio laureatosi a 14 anni in matematica, esperto in biologica e fisiologia, fondatore della cibernetica, e quintessenza della sbadataggine dei matematici. I miei giochi matematici usano ancora una volta sui fiammiferi: questa volta bisognerà spostarne qualcuno per ottenere un’espressione matematica corretta.

Alessandro Viani, La matematica del cervello, allegato a Gazzetta dello Sport e Corriere della Sera, €6.99 più il prezzo del giornale.

La scuola secondo Valditara

Lo sapete, a me non piace commentare sui commenti, quindi sono andato a leggere l’intervista del Ministro dell’Istruzione e del Merito. È apparsa sul Giornale, quindi pubblico amico, quindi posso immaginare che il suddetto ministro abbia avuto la possibilità di rivederla per correggere eventualmente le parti del suo pensiero che non erano state espresse in modo corretto. Vediamo dunque che c’è scritto.

Chiaramente non è possibile ricavare da un’intervista come saranno effettivamente declinate le indicazioni per le scuole (non sono programmi obbligatori da un pezzo), ma ci sono punti almeno teoricamente condivisibili, tipo «Sin dalla prima elementare avvicineremo i bambini alla musica, alla sua comprensione, alla civiltà musicale». Sono anche d’accordo, al di là della pessima retorica usata, sul concetto alla base di

La cultura della regola inizia dallo studio della grammatica. In particolare, è importante trasmettere all’allievo, fin dall’inizio, la consapevolezza del valore della correttezza linguistica e formale, dell’ordine e della chiarezza nella comunicazione. La chiarezza deve essere presentata come una forma di autocontrollo e anche di un doveroso impegno verso l’altro».

È vero che si può comunicare anche in modo sgrammaticato, ma questo corrisponde a un impoverimento che poi si ripercuote a catena ovunque. È vero che molte regole grammaticali sono speciose, ma ciò non significa che si possa costruire una frase a piacere; ci sono vincoli sintattici e semantici che ci aiutano a rendere più chiaro il nostro pensiero.

Invece non capisco per nulla la logica del reintrodurre il latino alle medie, o meglio, usando le parole del ministro,

«Pensiamo di reintrodurre opzionalmente elementi di latino già dalle medie, dalla seconda per la precisione, per numerose ragioni: apriamo le porte a un vasto patrimonio di civiltà e tradizioni; poi rafforziamo la consapevolezza della relazione che lega la lingua italiana a quella latina. E poi c’è il tema, importantissimo, dell’eredità».

Io sono stato uno degli ultimi studenti ad avere in seconda media la materia “italiano ed elementari conoscenze di latino” e in terza media latino come materia facoltativa (che ho seguito). Sono anche dell’idea che togliere il latino dagli scientifici, come ormai va di moda, sia un errore: non tanto perché il latino “insegnerebbe il pensiero logico”, cosa che si può fare in tanti modi, quanto perché permette di capire meglio non solo l’italiano ma anche tante lingue europee. Ma in seconda e terza media non capisci assolutamente nulla, e quello che tempo rimarrà con la riforma è una patina classista nelle scuole per fighetti.

Non mi è poi chiaro cosa significhi “verrà abolita la geostoria nelle superiori”, visto che tra l’altro questa riforma è solo fino alla secondaria di primo grado cioè le medie. Di nuovo, leggiamo il testo:

La storia diventa la scienza degli uomini nel tempo. L’idea è di sviluppare questa disciplina come una grande narrazione, senza caricarla di sovrastrutture ideologiche, privilegiando inoltre la storia d’Italia, dell’Europa, dell’Occidente. Di più, nella scuola primaria l’insegnamento verterà anche sullo studio del nostro patrimonio storico. Negli ultimi due anni, in particolare l’attenzione si concentrerà sui popoli italici, le origini e le vicende dell’antica Grecia e di Roma, le loro civiltà, i primi secoli del Cristianesimo».

Qualcuno più intelligente di me saprebbe spiegarmi che cappero sarebbe “la scienza degli uomini nel tempo”? E qualcuno mi spiega perché il concetto di storia del ministro assomiglia allo sbertucciamento che Edoardo Bennato faceva quando cantava In fila per tre? Sì, lo so, è il sovranismo all’opera. Ma quella non è storia, bensì (pessima) autopromozione che impedirà ancora di più di capire il mondo contemporaneo. Allegria.

In definitiva, se questo è l’antipasto tremo al pensiero del testo effettivo delle linee guida!

(Ah: vedo infine commenti sulla reintroduzione della Bibbia, ma nell’intervista non ho trovato la parola).

Gabriele Lolli

Avevo conosciuto Lolli negli anni ’90 al Cenacolo Interdipartimentale di Torino, dove lui e Odifreddi (e se non sbaglio Ferraris) organizzavano conferenze mensili su tutto e ancora altro. Non credo che si sia mai accorto della mia esistenza, nonostante io sia notoriamente riconoscibile non tanto per l’altezza quanto per l’essere un casinista: ma già allora era molto serio e quindi non faceva certo battute e chiacchiericcio con un trentenne senza arte né parte. Non è poi così strano che le homepage dei giornali non abbiano riportato la sua morte avvenuta martedì scorso, e si trovino solo trafiletti che copiano il necrologio della Normale, dove aveva insegnato negli ultimi anni della carriera accademica.

Una cosa importante da tenere a mente è che Lolli non era un matematico: era un logico. E i logici guardano i matematici con lo stesso disdegno con cui i matematici guardano i fisici. Questo – se mi permettete di svicolare per una volta dal “de mortuis nisi bonum” – è stato forse un suo limite. Ho credo una decina di suoi libri, perché sono pieni di spunti interessanti: ma non appena cominciava a parlare di logica con la terminologia dei logici – che un matematico tipico non conosce, figuriamoci io che sono un matematico non praticante… – mi perdevo immediatamente. Lo so, avrei dovuto studiare, ma mi ci vedete?

Se volete partire da un Lolli più semplice, vi consiglio Il riso di Talete, che è anche uscito in una nuova edizione: perché per quanto serio (e logico…) Lolli aveva comunque una formazione matematica e quindi sapeva qual è il senso dell’umorismo dei matematici.

Carnevale della Matematica #183

“Il merlo merlino”
(Poesia gaussiana)

logo-carnevale_matematica
Benvenuti all’edizione numero 183 del Carnevale della matematica, dal tema “2025”! Come vi siete sicuramente accorti, abbiamo saltato il mese di dicembre. Capita. Il numero d’ordine è però quello immediatamente successivo a quello di novembre, e Dioniso come sempre ci presenta la sua cellula musicale: cadenza molto semplice (sol-do), ma con un salto di settima minore che non è usuale.

Quali sono le proprietà interessanti del 183? Innanzitutto è un numero perfetto totiente, l’ottavo. La φ(n) di Eulero, la funzione totiente, è quella che conta i numeri minori di n primi con esso: nel caso di 183 = 3·61 abbiamo φ(183) = 120; se continuiamo a iterare finché non arriviamo a 1 abbiamo φ(120) = 32, φ(32) = 16, φ(16) = 8, φ(8) = 4, φ(4) = 2 e finalmente φ(2) = 1. Se sommiamo tutti questi numeri otteniamo esattamente 183. Inoltre, poiché 183 = 13² + 13 + 1 e 13 è un numero primo, 183 è il numero di punti del piano proiettivo costruito su ℤ13; è inoltre il numero di alberi di lunghezza minore o uguale a 4 dove ogni nodo ha al più due rami (se passiamo a una lunghezza minore o uguale a 5 si arriva a 33673…) e il numero di semiordini possibili con quattro elementi, qualunque cosa sia un semiordine (ho guardato in fretta la pagina Wikipedia, ma non l’ho mica capito…)

Passiamo ai contributi! Innanzitutto, perché il tema è 2025? Ovviamente perché questo è l’anno 2025, ma anche perché esso è un numero con tante proprietà, e visto che immagino che nessuno di noi parteciperà al Carnevale della matematica tanto valeva parlarne ora.


Annalisa Santi recupera un suo post del 2018, Fondazione Prada…arte e curiosità matematiche. Come ci spiega,

Il tema “2025” di questo primo Carnevale del nuovo anno mi ha fatto rispolverare un articolo in cui, dopo una intrigante visita al museo Prada, parlai dei numeri naturali con configurazioni geometriche di punti.
In tali configurazioni, dette anche numeri figurati o poligonali, spiccano gli gnomoni, i numeri quadrati e i numeri triangolari.
I numeri 1, 4, 9, 16, 25, … 2025 sono considerati numeri quadrati perché, intesi come punti, possono essere disposti in un quadrato.
Evidenziarlo per il numero 2025 richiederebbe certo troppo spazio ma per uno più piccolo, tipo 3 e 4, si può notare che i punti situati a destra e al di sotto delle linee che separano detti punti formano quello che i Pitagorici chiamavano uno gnomone e che così si definisce:
“sottraendo da un quadrato il quadrato immediatamente precedente si ottiene uno gnomone, che è sempre un numero dispari”, che in simboli si rappresenta:
(n + 1)² – n² = 2n + 1
Quindi lo gnomone di n = 45 (n² = 2025) è 91!
Inoltre, partendo da 1 e aggiungendo lo gnomone 3, poi lo gnomone 5, e così via si ricava che:
“un generico numero quadrato si ottiene sommando i numeri dispari, a partire dall’unità” e che in simboli si rappresenta:
n² = 1 + 3 + 5 + 7…….. + (2n – 1)


Gli amici di MaddMaths! declinano invece il 2025 alla rovescia, nel senso di raccontare quello che hanno fatto nel 2024.
Com’è stato il 2024 di MaddMaths! ?: [NdC: il testo originale era pieno di collegamenti che non metto. Potete trovarli cliccando sul post…]
Un altro anno è passato, e questo 2024, ha mantenuto solo poche delle sue potenzialità, mancandone tante altre. Noi, come diceva Voltaire, per ora coltiviamo il nostro orticello, e durante l’anno appena trascorso abbiamo finalmente deciso di dare vita all’Associazione MaddMaths!, un ente no profit del terzo settore che dovrebbe servire a portare avanti progetti di promozione della matematica. Molti di voi hanno già deciso di associarsi e speriamo che ci siano altre persone che prendano presto la stessa decisione. Più siamo e più abbiamo forza per organizzare nuove cose. Abbiamo già fatto due assemblee plenarie, ma tanto c’è ancora da fare. Vi aspettiamo!
Cosa farà MaddMaths! nel 2025 lo scopriremo presto, ma intanto nel 2024 abbiamo spaziato: dal nostro podcast di didattica della matematica (fatto con l’UMI-CIIM e AIRDM) alle tante recensioni di libri, e poi come al solito la Giornata Internazionale della Matematica è stata importante. Oltre al podcast sulla didattica, abbiamo creato due podcast nuovi di zecca: Sulle tracce del Detective Maxwell di Edoardo Provenzi e Musica Razionale di Paolo Soffientini e Sebastiano De Gennario. Ci sono state due nuove serie: Una chiacchierata sulla topologia di Gabriele Belegni e La matematica è piena di Eulero! di alcuni amici di MaddMaths! e tre nuovi video della nostra matematica danzante Raffaella Mulas. E non dimentichiamo La lente matematica di Marco Menale e i nostri favolosi Librini. E un piccolo grande evento ha illuminato l’ultimo terzo dell’anno: da settembre i Rudi Mathematici hanno raggiunto MaddMaths! con un loro angolo dedicato! Abbiamo partecipato alla Festa delle Donne Matematiche a Napoli, al Festival della Scienza di Genova, alla festa per Pino Rosolini (sempre a Genova), al Comics&Science Palace. La nostra Madd-Letter è andata avanti con 12 edizioni normali e 3 speciali.

Inoltre hanno raccontato anche Alcuni notevoli risultati matematici del 2024:
Geometria, algebra, topologia, intelligenza artificiale e dinamica dei fluidi hanno caratterizzato il 2024 della Matematica. La redazione di MaddMaths! ha raccolto alcuni di questi risultati notevoli.

Amolamatematica preferisce invece concentrarsi sugli errori da contrastare:

“Alla ricerca di uno svolgimento adeguato del tema assegnato, ho fatto come gli studenti quando devono scrivere un tema in classe: ho scritto 2025 in grande su un foglio e ho cominciato a pensare. Dal teorema di Nicomaco al semplice quadrato, sul 2025 come anno matematico è stato scritto e proposto un po’ di tutto. Mi sono, quindi, fermata al numero: 2025, la cui somma delle cifre è 9. Per questo motivo e forse perché, ultimamente, i miei pensieri erano focalizzati sul tema dell’errore, ho deciso di parlare, ancora una volta, della prova del 9 per verificare l’esattezza delle quattro operazioni. Come mio solito, non l’ho fatto da sola, ma attingendo dalla rete alcuni suggerimenti e riorganizzandoli come in un collage.”

Il mio post sul 2025 è invece questo.



E ora vediamo i contributi generici di questo periodo.

Cominciamo dai Rudi Mathematici, che come sapete ora sono ospitati presso MaddMaths.

A dicembre è uscito RM311: oltre che nel solito archivio del sito di RM, adesso si può raggiungere anche direttamente dal blog su MaddMaths, perché lì ci finiscono anche le newsletter che accompagnano l’uscita di ogni numero dell’e-zine.

E, sempre a dicembre, è uscito anche il solito Calendario di RM, che ovviamente del tutto “solito” non può essere, un po’ perché gli anni cambiano, un po’ perché anche i nomi dei matematici presenti nelle opportune caselline si arricchiscono, ovviamente .

Ci sono poi i post relativi alle soluzioni dei problemi pubblicati sull’edizione cartacea di Le Scienze: qui il passaggio è in un certo senso doppio, perché all’interno dei post sul blog di MM! c’è il link per raggiungere l’articolo di soluzione pubblicato sul sito di Le Scienze. Il problema di dicembre parlava di “Pacchi di Natale”, mentre quello precedente di Novembre si avventurava in un improbabile torneo di tennis.

C’è poi Problemi Classici – Semplificazioni molto semplici. Avete presente come si semplificano le frazioni? Bene, dimenticatevelo. Vi spieghiamo noi un metodo semplice e che non richiede troppi calcoli.

Poi, vabbè… il blog viene ripopolato un po’ a caso, e insomma, almeno in questi primi mesi, non funziona proprio come un blog strettamente cronologico. Però citiamo almeno un vero classico, noto a quasi tutti, che parla di cammelli ed è illustrato con dromedari, perché ha scatenato un po’ di commenti.

E per farmi arrabbiare, ieri sera è anche stato pubblicato RM 312!


Per quanto riguarda MaddMaths!, oltre ai post dei Rudi Mathematici indicati sopra, c’è tanta roba.

Anno nuovo, podcast nuovo: Benvenuti a “Nodi da Sciogliere”, il podcast a cura di Nicoletta Tribastone che vi porta nel magico mondo dei racconti di Lewis Carroll, dove la fantasia si intreccia con la logica e la matematica. In ogni episodio esploreremo uno dei racconti tratti dalla sua raccolta “10 Nodi da Sciogliere”, svelando i segreti nascosti tra le righe e invitandovi a mettere alla prova il vostro ingegno, cominciando da Nodi da sciogliere – Episodio 1: Folletto, portali su e giù

Ricordo di Adam Atkinson Pochi giorni fa è venuto a mancare Adam Atkinson, esperto di matematica ricreativa e collaboratore occasionale di MaddMaths!. Daniele Aurelio ci racconta qualche cosa della loro amicizia.

La storia di un divano (e ora sappiamo che forma ha) Pochi giorni fa sul sito di preprint ArXiv, il matematico Jineon Baek ha pubblicato un preprint in cui annuncia la soluzione di un problema matematico abbastanza inusuale: qual è l’area del più grande divano che può essere fatto passare per un corridoio di larghezza costante a forma di L? In attesa di sapere se questo risultato sarà confermato, Riccardo Moraschi ci racconta di cosa si tratta.

Come visualizzare la moltiplicazione dei numeri naturali? Costruiamo un grafo! Alessandro Zaccagnini ci racconta di un progetto che ha realizzato con le docenti Maria Chiara Gullo e Lorenza Serventi dell’Istituto Comprensivo “Guatelli” di Collecchio (Parma), nel quale hanno fatto costruire agli allievi di due classi terze della Secondaria di primo grado due “grafi,” uno bidimensionale e l’altro tridimensionale, associati alla moltiplicazione dei numeri naturali; dopo la costruzione hanno usato gli oggetti per ottenere informazioni teoriche sulle proprietà dell’operazione. Vediamo cosa ne è venuto fuori.

Per la collana “Rivoluzioni Matematiche”:
Rivoluzioni matematiche: il Teorema del Dini della funzione implicita di Eugenio Montefusco Con il numero di Gennaiode Le Scienze troverete in allegato il ventottesimo dei volumi della collana dedicata ad alcuni tra i maggiori teoremi matematici (che da trenta sono diventati quaranta!). La collana è stata elaborata in collaborazione con la redazione di MaddMaths!. Questo nuovo volume è dedicato al teorema di Dini sulle funzioni implicite ed è scritto da Eugenio Montefusco.

Rivoluzioni Matematiche: il teorema di Weierstrass di Francisco Facchinei Con il numero di Dicembre de Le Scienze troverete in allegato il ventisettesimo dei trenta volumi della collana dedicata ad alcuni tra i maggiori teoremi matematici. La collana è stata elaborata in collaborazione con la redazione di MaddMaths!. Questo nuovo volume è dedicato al teorema di Weierstrass sui massimi e minimi delle funzioni ed è scritto da Francisco Facchinei.

Per le News di Stefano Pisani:
Scacchi. Ecco quanto il cavallo è più veloce del re Negli scacchi, il cavallo si muove più “velocemente” (un po’ come accadrebbe nella vota reale, diciamo…), per ovvi motivi, dato che il re può spostarsi solo di una casella mentre il cavallo ha un movimento a L più ampio. Ma quanto più velocemente, esattamente, si muove il cavallo? Lo ha calcolato Christian Táfula Santos, dottorando presso il Dipartimento di Matematica dell’Università di Montréal (UdeM), e la sua dimostrazione è stata pubblicata sul server di preprint arXiv.

Il concetto di numero è elaborato in aree cerebrali molto antiche. La concettualizzazione numerica potrebbe avere le sue radici in un’area finora non associata a pensieri matematici

Per La Lente Matematica di Marco Menale:

Calciomercato matematico. È cominciato il calciomercato di riparazione che è sempre più basato su matematica, statistiche e dati. Il modello MLR confronta le performance e le statistiche di due (o più) giocatori assegnando poi un valore a ciascuno sulla base di opportuni pesi. In questo modo, le scelte delle società trovano un supporto quantitativo in numeri e modelli.

Crescita e risorse: la funzione di Monod. Come varia il tasso di crescita di una popolazione batterica quando le risorse sono limitate? L’equazione di Monod modella questo fenomeno. Trova applicazioni in diversi contesti, come i bioreattori.
Il modello di Holling per la predazione. Il modello Lotka-Volterra descrive l’evoluzione di un sistema di prede e predatori. Ma quante prede riescono davvero a consumare i predatori? Risponde Holling. La risposta funzionale di Holling descrive il tasso di consumo di prede da parte dei predatori. Ce ne sono tre diversi tipi a secondo delle specie in gioco.

Per Letture Matematiche:
A Cambridge con Newton: un racconto affascinante tra scienza e storia. Perché le mele cadono a terra? A che cosa sono dovute le maree? Quale fenomeno genera gli arcobaleni? Nel libro “A Cambridge con Newton – Andrea scopre la gravità” di Silvia Merialdo, che fa parte della collana ScienzaInViaggio pubblicata delle Edizioni Dedalo, i giovani lettori troveranno risposta a queste e altre domande grazie alle spiegazioni di Newton in persona. Lo ha letto per noi Monica Mattei.


Anche Gianluigi Filippelli scrive molto.

Iniziamo con Matematica in vacanza #3 che raccoglie tutti i post matematici usciti tra metà novembre e metà dicembre 2024.

Passiamo alle recensioni, che come nei mesi precedenti è fagocitata dalla collana Matematica:
* Problemi inversi di Maria Lazzaretti
* La matematica della cybersecurity di Alessandro Mazzoccoli
* Matematica sperimentale di Pierluigi Vellucci
* Algoritmi e immagini di Maria Lazzaretti

Nella serie dei Rompicapi di Alice ecco Il problema del commerciante, un rompicapo geometrico popolarizzato da Henry Dudeney nel 1902.

Tra i Paralipomeni ecco Dissezionare e ricomporre quadrati, la mia proposta di soluzione per il gioco matematico con cui si conclude il 45.mo volume della collana Matematica.

Per Le grandi domande della vita, Il mahjong e la combinatoria in cui a partire da alcune domande sul mahjong presenti in un romanzo di Andrea Vismara andiamo a scoprire il legame tra questo gioco cinese e la combinatoria.

Infine, visto che il periodo che ha preceduto questa prima edizione del 2025 era di festa, c’è anche un post natalizio: Il problema di Babbo Natale, sul problema della consegna del regalo migliore a ciascun bambino.


Poi ci sono io. Anch’io ho un ricordo di Adam Atkinson, che è comunque parte della matematica. Tutto il resto:

Per i quizzini della domenica, abbiamo (Semi)cerchi e triangoli, semplice problema geometrico classico, seguito da un “non quizzino” per vedere se siete attenti con le regole aritmetiche; Finestra gotica, ancora un problema geometrico classico; Etichetta, geometria molto semplice; Teiere, dove le dimensioni non contano; Bandiera, semplicemente geometrico; Potenze, per divertirsi coi logaritmi; Fette di pentagono, conti geometrici piuttosto semplici; Raddoppia i triangoli, geometrico quanto basta, ma che richiede di pensare un po’ out of the box; Monty Hall con la sorpresa, che credo abbia generato reazioni simili a quello originale.

Per le recensioni dei libri della collana Matematica, i volumi sono: 41, Simulazione e statistica di Alessandro Viani. Impareremo a scegliere un buon campione, casuale ma non troppo. – 42, Matematica e computer dell’infaticabile Paolo Caressa. L’informatica di base vista da un punto di vista matematico (che è davvero diverso!) – 43, Crittografia ed entropia di Giovanni Chesi e Leonardo Vaglini. L’altra faccia della teoria dell’informazione. – 44, Problemi inversi di Marta Lazzaretti: come trovare la domanda migliore che dà la risposta che abbiamo. – 45, La matematica della cybersecurity di Alessandro Mazzoccoli. A volte è meglio rischiare e non assicurarsi contro i cibercrimini! – 46, Matematica sperimentale di Pierluigi Vellucci. Attenzione, contiene la congettura di Collatz. – 47, Matematica e immagini di Marta Lazzaretti: una spiegazione di come funzionano i parametri per migliorare le nostre immagini. – 48, Teoria delle categorie di Marco Erba e Claudio Sutrini: matematica astrattissima fatta con i disegnini.

Per le recensioni matematiche generiche: Mathematical Lateral Thinking Puzzles, di Paul Sloane e Des MacHale. Diciamo che parecchi degli enigmi non sono poi cosi laterali. – Lateral Solutions to Mathematical Problems di Des MacHale. Anche qui secondo me matematica ce n’è, ma pensiero laterale non sempre. – Parole, formule, emozioni, di Paolo Maroscia et al. I brevi saggi nel volume che parlano di relazioni tra matematica e letteratura sono molto disuguali. – Dove va la fisica, di Matteo Serra. Uno sguardo a 360 gradi sulla fisica oggi. – Trick, Games and puzzles with Matches di Maxey Brooke: diciamo che la matematica ricreativa è migliorata nei decenni.

Per il mercoledì matematico parlo dei numeri autobiografici, con una curiosa aggiunta; di una generalizzazione delle terne pitagoriche, i mattoni di Eulero; di come si può simulare un dado a 9 facce; del fatto che forse è stato dimostrato il teorema del divano; del fratello minore del rapporto aureo: il rapporto argenteo; di un gioco di prestigio (matematico) dei tempi di Shakespeare.

Per il resto, racconto di un allarme sugli utensili di plastica neri perché si è sbagliata una moltiplicazione; che i sistemi LLM stanno migliorando i loro punteggi matematici, ma a un costo probabilmente eccessivo; mostro un numero primo bene ordinato.


Appuntamento a febbraio con i Rudi Mathematici!