Qualche giorno fa ho
iniziato a parlare dell’induzione matematica.
Dopo aver parlato di induzione solo dal punto di vista teorico, vediamo un esempio esplicito di dimostrazione per induzione, mostrando che la somma dei numeri dispari da 1 a 2n+1 è uguale a (n+1)2. Il passo iniziale è semplicissimo: quando n=0, la somma dei numeri da 1 a 1 fa 1, che è esattamente il quadrato di 1. Più facile vederlo che spiegarlo. Immaginiamo ora che l’ipotesi valga fino a un certo n, e proviamo a vedere cosa succede con n+1. La somma dei numeri dispari da 1 a 2(n+1)+1, cioè da 1 a 2n+3, è pari a 2n+3 più la somma dei numeri dispari da 1 a 2n+1, che per ipotesi induttiva è (n+1)2, cioè n2+2n+1. Facendo la somma otteniamo n2+4n+4, che guarda caso vale proprio (n+2)2. Fine della dimostrazione: con un solo caso generale abbiamo dimostrato l’ipotesi per gli infiniti casi particolari.
Tutto questo è bellissimo, ma siete stati attenti c’è qualcosa che non va.Il guaio non è nella dimostrazione, che non è poi così difficile: si fanno giusto un po’ di giochetti formali coi numeri e si arriva al risultato, e questo capita spesso quando si usa l’induzione, tanto che a volte mi chiedo se nessuno abbia mai fatto un sistema di intelligenza artificiale che sappia risolvere problemi per induzione. Ma come facevamo a sapere che il risultato era proprio quello indicato nel teorema? Chi ce l’ha suggerito? Insomma, l’induzione è un bieco trucco; riusciamo solo a dimostrare qualcosa che conosciamo già. La cosa è spiazzante soprattutto per chi è rimasto alla concezione che purtroppo viene insegnata a scuola, vale a dire che la matematica sia qualcosa di perfettamente lucidato, con i teoremi che sono così perché non potrebbero essere diversi, e che scendono dall’alto come novelli deus ex machina. No, non è affatto così. La matematica avanza per tentativi ed errori, ed è solo in un secondo tempo che ci si affretta a togliere tutte le impalcature e lasciare solo il risultato finale per l’ammirazione del popolo. Per quanto riguarda l’induzione, quello che succede di solito è che il matematico fa un’ipotesi su quale possa essere il risultato, e poi controlla se ha ragione; proprio come un meccanico che ascolta il rumore di un motore e fa una diagnosi. Il vantaggio del matematico, se volete, è che non si sporca le mani… a meno che la penna con cui sta scrivendo non perda inchiostro!
Do solo un accenno a un’estensione del principio di induzione, che potete tranquillamente lasciar che è un parallelo della teoria cantoriana degli infiniti. L’induzione classica si applica all’infinito numerabile, ma si può anche parlare di induzione transfinita; in questo caso su dice che “se una proprietà P vale per zero, e quando vale per tutti gli ordinali minori di ψ, allora P vale anche per ψ, allora vale per tutti gli ordinali.” Come in tutte queste eteree proprietà logiche, l’induzione transfinita è indipendente da quella standard, nel senso che uno può accettarla oppure no e il resto della matematica va avanti tranquillo; se lo si accetta, però, l’induzione standard ci viene data gratis. Un esempio a riguardo è il teorema di Goodstein, che non è decidibile usando gli assiomi di Peano ma è vero se si ammette l’induzione transfinita.
Termino con un paradosso matematico basato sull’induzione, che “dimostra” come tutti i cavalli sono dello stesso colore. Prendiamo un insieme di n cavalli. Nel caso n=1 la tesi è banalmente vera. Per un n qualunque, numeriamo i cavalli e togliamo il numero 1. Rimangono n-1 cavalli, che per ipotesi induttiva sono tutti dello stesso colore. Ma se rimettiamo il numero 1 e ne togliamo un altro, abbiamo di nuovo n-1 cavalli, che sono sempre dello stesso colore di prima. A questo punto, visto che i due insiemi hanno un’intersezione in comune, è chiaro che tutti e n i cavalli sono dello stesso colore. O no?
Ultimo aggiornamento: 2010-03-08 07:00