Gli antichi egizi scrivevano i numeri frazionari come somma di frazioni con numeratore 1 e denominatori tutti diversi tra loro: per esempio 5/14 = 1/3 + 1/42 e 9/11 = 1/2 + 1/4 + 1/15 + 1/660. Per scrivere una frazione come egizia si può usare il metodo “greedy”, togliendo a ogni passo la frazione più grande possibile; non è detto però che esso porti alla somma con il minor numero di addendi. L’occhio di Horus, mostrato qui in figura e che magari vi ricorda l’album dell’Alan Parsons Project Eye in the Sky, contiene appunto alcuni geroglifici corrispondenti a frazioni egizie la cui somma è quasi 1. (Il “quasi” è stato completato da Toth, o Hathor secondo altre tradizioni, per mezzo della magia.)
Ma non è direttamente delle frazioni egizie che voglio parlarvi oggi. Luca Rovelli ha scritto di un tema leggermente diverso, ma correlato. Diciamo che un numero è strettamente egizio se può essere scritto come somma di numeri tutti distinti i cui inversi hanno somma 1. Il più piccolo numero strettamente egizio è 11: infatti 1 = 1/2 + 1/3 + 1/6, e 2 + 3 + 6 = 11. Nel 1963 Ron Graham studiò questi numeri e scoprì che esiste un numero finito di numeri che non sono strettamente egizi: il maggiore di essi è 77, e il loro elenco si trova (ovviamente…) su OEIS.
(immagine di Kompak, Benoît Stella e Ignacio Icke da Wikimedia Commons)
Ultimo aggiornamento: 2024-12-06 12:14
Anche gli Accademici di Stoccolma che assegnano i Nobel scientifici seguono spesso le mode, anche se non a livello di quelli del premio per la letteratura che secondo me ogni tanto si divertono. Così quest’anno il premio per la fisica è andato a John Hopfield e Geoffrey Hinton “per le scoperte e invenzioni di base che hanno permesso il machine learning con le reti neurali artificiali”. Ora che l’AI è tornata di moda, evidentemente, anche il comitato ha deciso di salire sul carro del vincitore.
Quello che vedete qui a sinistra è un poligono (intrecciato) di 100 lati. D’accordo, assomiglia più a uno scarabocchio, ma tecnicamente è un poligono. Supponiamo di costruire un nuovo poligono i cui vertici siano i punti di mezzo dei cento lati, e ripetere l’operazione a piacere. Cosa otterremo come limite? Beh, sempre un poligono di cento lati, mi direte: ma non è esattamente così. Il poligono ottenuto sarà sempre più piccolo, e il limite dei vari poligoni sarà un singolo punto, il baricentro di quelli iniziali.
Se abbiamo un cerchio di raggio $r$, la sua circonferenza è $2\pi r$. Questo è facile. Se abbiamo un’ellisse di semiassi $a$ e $b$, il suo perimetro è $P(a,b) = 4aE(e^2)$, dove l’eccentricità $e$ è data da $\sqrt{a^2-b^2}/a$ ed $E$ è l’integrale $E(x) = \int_{0}^{\pi/2}(1-x \sin^2\theta)^{1/2}d\theta$. Un po’ meno facile, considerato poi che quell’integrale è un integrale ellittico del secondo tipo (poca fantasia nei nomi, concordo) e non è risolubile se non con metodi numerici.
Il fattoriale di 4 è 24; se gli sommiamo 1 otteniamo 25, che è il quadrato di 5. Il fattoriale di 5 è 120; sommandogli 1 otteniamo 121, che è il quadrato di 11. Il fattoriale di 7 è 5040; sommandogli 1 otteniamo 5041, che è il quadrato di 71. E poi? Basta, almeno per quanto ne sappiamo. 
bLa scorsa settimana