Archivi categoria: matematica_light

giochiamo a dadi?

(ok, non ho scritto sulla tombola, anche se qualche idea ce l’ho. Però forse il concetto non è così diverso. E già che ci siete, fate un salto da proooof che spiega come funziona il gioco del 15!)
tre dadiOggi mi sento particolarmente buono e desideroso di farvi vincere un po’ di soldini: vi propongo quindi un gioco d’azzardo tutto per voi. Le regole sono semplicissime: voi scegliete un numero da uno a sei e fate la vostra puntata; a questo punto io lancerò tre dadi (che garantisco essere perfettamente equilibrati). Se uno dei dadi uscirà con il numero da voi puntato, vincete la posta giocata (in pratica, se avete puntato un euro ve ne darò indietro due); se i dadi con il vostro numero sono due, vincerete due volte la posta; se avete più culo che anima e tutti e tre i dadi mostrano il vostro numero, vi pagherò ben cinque volte la posta. Tutto qua: non c’è trucco non c’è inganno.
Pensateci un attimo: preso un singolo dado, avete una possibilità su sei che esca con il vostro numero, quindi se puntate sempre un euro vi succederà che in media ogni sei euro giocati ve ne tornano indietro due. I dadi sono tre, e assolutamente indipendenti tra loro: quindi il gioco sarebbe equo se con tre numeri uguali al vostro usciti vinceste tre volte la posta, ma io sono buono e in quel caso vi pago anche di più. Insomma, la cosa si direbbe interessante, no?
Molto interessante, direi… tanto che casinò di tutto il mondo prevedono questo gioco, anche se in genere non danno il mio superbonus. Come si può leggere su Wikipedia (inglese), il gioco si può trovare in Gran Bretagna (col nome di Crown and anchor, “corona e ancora”, perché i dadi usati hanno sulle facce i quattro semi delle carte da gioco e appunto una corona e un’ancora), negli Stati Uniti come Chuck-a-luck, nelle Fiandre come Anker en Zon, “ancora e sole”, in Francia come Ancre, Pique et Soleil, e addirittura in Vietnam come “bau bau micio micio”… no, scusate, Bau cua ca cop che non so assolutamente cosa significhi ma sembra usi delle belle immagini orientali al posto dei nostri semi, soli, e simili. Magari a questo punto vi sarà venuto qualche dubbio! Bene, sono qua per fugarveli.
Analisi del gioco
Per vedere come mai il banco ha un discreto vantaggio in questo gioco, il metodo che probabilmente viene in mente è provare tutte le 216 (cioè 6*6*6) combinazioni possibili lanciando tre dadi, calcolare la vincita in ciascuno di questi casi, e vedere se è maggiore o minore del numero di combinazioni possibili. Tranquilli, non ho nessuna voglia di farlo, sono quelle cose che vi fanno poi dire che odiate la matematica: e avete perfettamente ragione. La matematica non è “fare i conti”. Può essere in parte “sapere come fare i conti” (e poi infilarli dentro un programma al pc o anche solo un foglio excel), ma è soprattutto “vedere come si può arrivare alla soluzione del problema con la minore fatica possibile”… e ogni trucco, finché è “lecito” secondo le regole della matematica, è il benvenuto.
In questo caso, il metodo più semplice è pensare di puntare un euro su ciascuno dei sei numeri che possono uscire, e vedere cosa succede. In teoria dovremmo, almeno in media, ricevere sei euro o più per ogni possibilità. È proprio così? Vediamo.
– se i tre numeri che sono apparsi sono tutti diversi, vi tornano indietro tre degli euro giocati più tre di vincita: totale sei euro.
– se i tre numeri sono tutti uguali, vi torna indietro l’euro giocato su quel numero più cinque di vincita: totale sei euro.
– se ci sono due numeri uguali e un terzo diverso, vi tornano indietro due degli euro giocati, più uno di vincita per il singoletto, più due per la coppia: totale cinque euro.
Toh. Quando va bene siete in pareggio, ma ci sono delle volte in cui perdete; quindi in assoluto il gioco vi è sfavorevole. Fine della dimostrazione.
Purtroppo, per sapere quanto sia sfavorevole, bisogna fare i conti, e quindi devo andare contro quello scritto sopra su cos’è la matematica. Facciamo che vi fidate, e prendete per buono il risultato finale: una volta puntato su un numero prefissato, ci sono 75 casi in cui questo esca come singoletto, 15 in cui esce come coppia e uno in cui c’è la tripletta (negli altri casi non esce), il che con le regole che ho dato sopra significa un vantaggio per il banco praticamente del 7%, ben più ad esempio della roulette. State insomma ben lontani da chi vi propone questo gioco, lo dico per il vostro bene.
La spiegazione
Questo sembrerebbe proprio essere un paradosso: in fin dei conti il ragionamento iniziale secondo cui se il dato lanciato fosse stato uno solo si sarebbe in media rimasti con un terzo della posta non fa una grinza, e siamo tutti d’accordo che i tre dadi lanciati sono indipendenti tra loro… o no? abbiamo trovato una scoperta di importanza pari alla meccanica quantistica? Tranquilli, non è così. Nemmeno stavolta ci daranno il Nobel. Però, se guardate attentamente la dimostrazione “veloce” che ho scritto qui sopra per far vedere che il gioco non è equo, dovreste essere in grado di intuire dove sono “il trucco e l’inganno”. Se invece non avete proprio voglia di scervellarvi, continuate a leggere qui di seguito!
Il punto chiave che permette di capire cosa succede è fare attenzione a come vengono calcolate le vincite. I soldi che ti ritornano indietro sono in parte quelli della vincita vera e propria, ma in parte quelli che sono stati puntati. Quindi è vero che i risultati dei lanci dei dadi, intesi come numeri che escono, sono indipendenti tra di loro; ma il nostro risultato, inteso come i soldi che ci ritornano indietro, non lo è. Se abbiamo puntato un euro su un numero, con il primo dado che esce con quel numero ci tornano indietro due euro, ma con il secondo se ne aggiunge uno solo in più, e non due come nel caso di vera indipendenza.
È più chiaro adesso il tutto? Se no, potete sempre scrivermi :-)

Ultimo aggiornamento: 2007-12-05 11:58

parole matematiche: perimetro

(la lista delle parole matematiche si trova qua!)
Questa è una parola che mi sa tanto sia rimasta in testa a chiunque abbia finito le elementari. “Perimetro per apotema diviso due” tornerà sicuramente alla mente come formula esoterica da mormorare nei riti satanici… pardon, matematici; il significato si è perso nelle nebbie dei ricordi – per i curiosi, è la formula per calcolare l’area di un poligono regolare inscritto in una circonferenza – ma tanto si sa che la forza mistica racchiusa nelle parole non richiede di conoscerne il significato, ma solamente il suono.
Ad ogni modo, perimetro è una parola greca, come la maggior parte dei termini geometrici: il suffisso -metro sta per “misurare”, mentre peri- ha il significato di “intorno”, proprio come in “perizoma” e “periferia” (che poi sarebbe il termine greco per “circonferenza”… ma questa è un’altra storia). Il perimetro di una figura è quindi la lunghezza della parte più esterna di una figura; detto in altro modo, la somma delle lunghezze dei vari lati. Sembra ancora di vedere il protogeometra che disegna una figura per terra, pianta dei bastoncini in corrispondenza dei vertici, prende una cordicella e la mette tutta intorno. Misurazione molto pragmatica, non c’è che dire. In italiano non è comunque arrivata direttamente, ma per via del francese périmètre.
Purtroppo gli economisti si sono appropriati della parola, e nei bilanci dei grandi gruppi si legge spesso l’espressione “a parità di perimetro”. In questo caso di poligoni non ne abbiamo, e men che meno di lati. Sempre di somme si parla, in effetti, ma sono le somme dei ricavi, o del numero di dipendenti, delle aziende che fanno parte del gruppo; quindi se ad esempio è stata ceduta una società del gruppo il suo “perimetro” si riduce. So già che cosa state per dirmi: l’analogia corretta non sarebbe con il perimetro, ma con l’area. Ma che pretendete dagli economisti?

Ultimo aggiornamento: 2007-11-21 10:31

Parole matematiche: ipotesi

(la lista delle parole matematiche si trova qua!)
La parola “ipotesi” è greca, e fin qui non ci piove. Magari però non avete mai pensato che esiste un suo perfetto corrispondente latino: “supposizione”. L’etimologia è infatti dal greco hypo-, sotto, e -thesis, il porre. In italiano la parola è attestata a partire dal 1617, dal filosofo Giovanni Botero che lo usava con il significato di “congettura per spiegare fatti di cui non si ha una piena conoscenza”.
Di per sé non è che ci sia una differenza enorme tra l’uso matematico e quello comune: però una differenza c’è. Infatti per un matematico l’ipotesi è sì una supposizione, ma che lui considera vera. Attenzione: l’ipotesi non è vera, ma viene presa per vera, come ad esempio nelle dimostrazioni per assurdo, dove il matematico spera appunto di trovare una contraddizione.
L’ipotesi che troviamo nel discorso comune è invece molto più vicina al significato “filosofico” che ho riportato sopra. L’ipotesi viene infatti buttata lì come spiegazione, e nessuno si preoccupa effettivamente se sia vera o falsa: basta che sembri spiegare i fatti. La differenza di approccio col matematico si vede eccome!

Ultimo aggiornamento: 2007-11-15 11:54

parole matematiche: incommensurabile

(le parole matematiche stanno di casa qui.)
La parola “incommensurabile” è uno di quei termini sicuramente copiati dalla matematica, ma che nel passaggio ha cambiato completamente il suo significato. Nell’uso comune, infatti, una grandezza è incommensurabile se è così enorme che non si riesce a stimarne il valore. Beh, che c’è di male? qualcuno si chiederà. C’è il prefisso in- e il termine “misura”, no? Vero: però manca un pezzo, il -com-, che cambia tutto.
Per un matematico, infatti, non si parla di una grandezza ma di due grandezze tra loro incommensurabili. La dimensione non c’entra nulla; conta solo il fatto che le due grandezze sono tra di loro in rapporto irrazionale, e quindi non si può trovare un sottomultiplo con cui “misurarle” esattamente entrambe. L’esempio canonico di due grandezze incommensurabili è dato dal lato di un quadrato con la sua diagonale, e non si può certo dire che una delle due sia enorme! E in effetti la prima occorrenza italiana della parola è del solito Galileo, che la prese dal latino tardo di Boezio – il primo probabilmente cui venne in mente di coniare il termine, traducendolo dal greco.
Ci si può chiedere il motivo di un simile spostamento di significato: magari è semplicemente legato al fatto che la matematica sembra così complicata che non la si riesce a misurare! In effetti nel 1703 il Viviani ha usato il termine nel significato di “senza adeguato termine di paragone”, e da lì c’è voluto poco a raggiungere il significato attuale. Sappiate però che stanno tutti sbagliando :-)

Ultimo aggiornamento: 2007-11-13 11:10

prodotto; fattore

Per l’acculturazione del volgo, ecco due nuove parole matematiche. La (scarna) lista completa la trovate su Wikispaces.
La parola prodotto non è greca – non sia mai! – ma latina. Deriva infatti da “producere”, che significa “fare avanzare”, letteralmente “guidare avanti”, con la stessa radice verbale che ci ha dato i conducenti e il Duce. In questo senso il verbo italiano si è trasformato in “produrre”, e abbiamo espressioni come il Prodotto Nazionale Lordo che fa sempre bella mostra di sé nei giornali. La prima occorrenza in italiano, nella forma “produtto”, è del solito Dante.
E allora come mai il risultato della moltiplicazione si chiama prodotto? Colpa dei commercianti. Quelli hanno iniziato a parlare del “prodotto della vendita”, che si calcolava moltiplicando il numero di oggetti venduti per il prezzo unitario. Visto che nel Basso Medioevo e ancora tra Umanesimo e Rinascimento i conti li facevano soltanto loro, il nome è rimasto appiccicato: però paradossalmente fino al sedicesimo secolo non se ne trova traccia: si vede che le moltiplicazioni le facevano solo in latino.
Parlando di prodotto, non si possono non menzionare i suoi componenti, vale a dire i fattori.
Il termine “fattore” fa probabilmente venire in mente il contadino che aveva una fattoria (ia, ia, oh!), o almeno lo faceva venire in mente fino a qualche decennio fa; ora non ne sarei più così sicuro. E in effetti, l’etimologia è proprio quella: il termine deriva dal latino “factor”, “fabbricatore”. Nell’antichità industrie non ce n’erano, solo artigiani, e dunque un posto dove si producevano tante cose era per definizione una “fattoria”. La prima occorrenza in italiano della parola “fattore” col significato di “amministratore di un’azienda agricola” risale addirittura al 1288!
Non che il termine nel senso matematico sia poi così posteriore: già nel 1292 qualcuno ha pensato che i numeri che fabbricavano (facevano) il prodotto potessero essere tranquillamente chiamati fattori. Il bello è che non è stato un matematico a usare per la prima volta questa parola – anche perché nessun matematico avrebbe usato il volgare. Non ci crederete, ma la prima occorrenza matematica della parola si trova in… Dante. Sempre lui, inutile: non possiamo farne a meno.
Per curiosità, aggiungo che “fattoriale”, quell’operazione che a partire da un numero ne ottiene uno molto più grande moltiplicando tra loro tutti quelli da 1 fino a lui, deriva sì da fattore, ma con un giro tortuoso: in effetti, la prima occorrenza del termine (nel 1892) aveva il significato “che si riferisce a un fattore”.

Ultimo aggiornamento: 2007-11-05 11:36

Si fa presto a dire media – parte 2

Non penserete mica di esservela cavata, con le medie? Ne sono state definite di tutti i tipi, sempre per la solita ragione che in alcuni casi conviene usare una definizione diversa da quella abituale. Eccovi allora qualche altro tipo di media più esoterica: non garantisco che vi serviranno nella vita di tutti i giorni, ma magari vi permetterà di fare bella figura in società!
La media geometrica è l’evoluzione della media aritmetica, nel senso che invece che avere somma e divisione si usano il prodotto e l’estrazione di radice. Limitandoci a due termini a e b, la loro media geometrica è data da sqrt(ab); inutile dire che se i termini fossero stati N, avremmo
usato la radice N-sima. Il nome di questa media credo derivi dal fatto che se abbiamo un rettangolo di lati a e b, il quadrato della stessa area ha appunto come lato sqrt(ab); quindi ti permette di dire qual è il “segmento medio” quando pensiamo all’area di una figura. Se vogliamo vedere la cosa in un altro modo e nascondere le radici quadrate, possiamo dirla così: se a è la media aritmetica tra m e n, allora n-a = a-m. Se g è la media geometrica tra m e n, allora n/g = g/m.
La media armonica è più complicata da spiegare, visto che è “l’inverso della media aritmetica degli inversi”. Nel caso di due elementi, la formula si semplifica un po’, visto che da 1/((1/2)((1/a)+(1/b))) si può arrivare a scrivere 2ab/(a+b); la fregatura è che nessuno si ricorda mai la formula “semplice”, e quindi si deve tutte le volte manipolare quella “complicata”, ma sicuramente più logica. Mi sarebbe piaciuto poter dire che la media armonica serve per trovare la “nota di mezzo” tra due, ma un po’ di conti fanno subito vedere che non è sempre vero. La media armonica tra un do e quello successivo sulla scala, ad esempio, è un fa e non un fa diesis; la media armonica tra un do e il sol superiore è però effettivamente un mi bemolle, il che ci rende un po’ più felici. Ma niente paura: esiste davvero un tipo di misura per cui la media armonica è quella naturale. Supponiamo che abbia guidato per 10 chilometri alla velocità media di 30 Km/h e per altri 10 chilometri alla velocità media di 60 Km/h: quale sarà la velocità media complessiva? 45 all’ora? No. La media aritmetica sarebbe stata la risposta giusta se avessi guidato per dieci minuti alle due velocità: allora avrei percorso complessivamente 15 chilometri in venti minuti, e i conti sarebbero tornati. Invece ho impiegato venti minuti per fare il primo tratto e dieci per fare il secondo tratto; in tutto sono stato in auto per mezz’ora e ho percorso 20 km, con una media complessiva di 40 Km/h, che guarda caso è la media armonica di 30 e 60. Questa differenza è tra l’altro alla base di un problemino matematico semplice ma fuorviante. Immaginiamo che io voglia percorrere i 200 Km tra Milano e Bologna alla velocità media di 80 Km/h, ma visto il traffico sull’Autosole sia costretto a fare i primi 100 chilometri ai quaranta all’ora. Se d’improvviso dopo Parma sono spariti tutti, a che velocità devo andare per il resto del percorso per raggiungere la media che volevo fare all’inizio?
vari tipi di mediaAnche gli ingegneri, poi, non volevano essere da meno e si sono inventati ancora un altro tipo di media, che chiamano media quadratica oppure valore efficace. Questo tipo di media è utile ad esempio nel caso si voglia calcolare la media di tensione della corrente alternata. La fregatura della corrente alternata è che a volte la tensione è positiva e a volte negativa: se si fa la media aritmetica viene fuori zero, e chiunque si sia preso una scossa capisce che c’è qualcosa che non va. Un approccio naïf potrebbe essere quello di prendere il valore assoluto di tensione e fare la media di quello; ma gli ingegneri – nonostante affermino il contrario – non amano le semplificazioni e hanno così pensato a un approccio più complicato. Per calcolare la media quadratica si prendono i vari valori, li si eleva al quadrato (capito il motivo del nome?), si fa la media dei nuovi valori ottenuti e si estrae la radice quadrata del tutto. In effetti, a dirla così, la cosa sembra davvero un’inutile complicazione: ma gli ingegneri hanno un asso nella manica e dicono che questo tipo di media tiene anche in conto quanto i dati sono dispersi… ma di questo ne parlerò un’altra volta, anche perché dire il vero non è che la cosa mi convinca troppo.
Quello che invece è interessante notare è che non solo se si prendono due numeri positivi tutte queste medie sono diverse tra loro – a meno che i due numeri siano uguali tra loro, ma allora a che ti serve farne la media? – ma sono sempre in un ben preciso ordine di grandezza relativa. Nella figura qui riportata, potete vedere cosa succede: dati due numeri (quelli in grigio in alto: rispettivamente 6 e 24) la media minore è quella armonica H, che nel nostro caso vale 9.6; segue la media geometrica G, che vale 12; poi c’è quella aritmetica A, che è 15; infine si ha la media quadratica E, che vale sqrt(306) e cioè quasi 17.5. Anche se in questo esempio le varie medie sembrano essere tutte ugualmente distanziate tra di loro, questo è un caso; quello che come dicevo non è casuale è l’ordine relativo tra le medie, che è sempre lo stesso. Addirittura per quanto riguarda la media aritmetica e geometrica, che sono le due più usate, la cosa assume il nome pomposo di disuguaglianza aritmetico-geometrica.
Ci sono ancora due tipi di media che si possono trovare leggendo i giornali; anch’esse hanno in fin dei conti diritto di esistenza, e quindi mi pare giusto parlarne un po’. La media pesata si usa… quando si vogliono confrontare mele con pere. No, non è così, ma l’idea è abbastanza simile. Supponiamo di volere calcolare il reddito medio degli italiani, partendo dal reddito medio degli abitanti delle varie regioni. La prima idea potrebbe essere quella di fare la media dei vari redditi. Però la Provincia Autonoma di Bolzano, con meno di mezzo milione di abitanti, ha un reddito quasi triplo della Sicilia, che di abitanti ne ha dieci volte tanto; fare una semplice media funziona peggio dell’esempio di Trilussa del mezzo pollo. Se non ci credete, provate a pensare a due gruppi, uno con dieci persone che non hanno un euro e uno con una singola persona che possiede ben dieci euro; la media non è certo di cinque euro a testa!statistiche su base giornaliera
Il trucco per ottenere un dato sensato è moltiplicare il reddito medio delle singole regioni per il numero di abitanti della regione stessa, fare la media (aritmetica) dei risultati, e dividere il totale per il numero complessivo degli abitanti italiani. Abbiamo pertanto dato un “peso” ai singoli valori, peso calcolato sul numero di abitanti. Scritto così sembra chissà che cosa, ma concettualmente non è che sia poi così complicato: se il reddito medio degli altoatesini è di 40000 euro, e il numero di cittadini è mezzo milione, questo significa che è come se ciascuno di loro avesse quel reddito. Facendo quindi la moltiplicazione otteniamo il reddito totale della Provincia Autonoma, che si può sommare a quello delle altre regioni perché “sono tutte mele” (non c’è la parola “media”). Ma visto che la media dobbiamo alla fine farla, ecco che dopo occorre fare una divisione. Detto in un altro modo, la media pesata è una banale media, dove non si prende un singolo rappresentante per ogni elemento del nostro insieme, ma li si prende tutti, ovviamente dando loro lo stesso valore perché è l’unico che conosciamo. Il bello della media è che è vero che la distribuzione dei redditi tra le singole persone è molto disuguale, ma per fare i conti possiamo fare finta che siano tutti uguali: basta ricordarsi di prenderli però tutti, e non limitarsi a un solo rappresentante.
statistiche su base settimanale La media mobile si può trovare spesso nelle pagine di economia. Prendiamo il valore di un’azione quotata in borsa. Soprattutto se l’azione non è una delle più trattate, da un giorno all’altro ci sono spesso delle variazioni consistenti, che però alla lunga più o meno si annullano. Oppure consideriamo il numero di copie vendute da un giornale – o il numero di lettori del mio blog. Un quotidiano sportivo vende molte più copie il lunedì, mentre per un quotidiano economico il lunedì è una giornata morta; i miei pochi lettori durante il weekend hanno generalmente qualcosa di meglio da fare che vedere se ho scritto qualcosa… o più probabilmente durante la settimana sono così scazzati che pur di fare qualcosa si mettono a leggermi. In ogni caso, il valore di un singolo giorno ha un’importanza relativa, se voglio sapere la tendenza sul lungo periodo. Bene, il sistema più semplice per ridurre l’influsso di valori spuri è quello di calcolare la media su un numero prefissato di valori: sette giorni nel caso del giornale, magari un intero mese per il titolo azionario. Nel primo caso, la variabilità delle quotazioni è semplicemente nascosta dal grande numero di dati usati; nel secondo caso il ragionamento logico che si fa ha una sua correttezza formale, perché confronti dati coerenti, anche se si spostano (ecco il perché la media si chiama “mobile”!) nel tempo. Le due tabelle disegnate qui sopra mostrano il numero di accessi al mio blog nelle ultime sei settimane; converrete che è molto più semplice vedere qual è la tendenza guardando la media mobile settimanale a sinistra, piuttosto che con il grafico giornaliero a destra. Abbiamo ancora una volta di fronte a noi il potere della media: eliminare dettagli inutili per la nostra analisi, e permetterci di concentrarci su quello che ci interessa realmente.
Per calcolare la media mobile su una finestra di N valori, occorre salvarsi tutti gli ultimi N+1 valori. Il procedimento banale consiste nel sommare gli N numeri e poi dividere per N, ma nel caso N sia grande il calcolo potrebbe dimostrarsi tedioso. Un sistema molto più semplice è prendere il valore della media attuale, e sommargli un N-simo della differenza tra il valore attuale e quello a distanza N. Chi ha voglia di fare i conti può vedere come il conto equivale a buttare via il valore più vecchio e mettere al suo posto quello appena trovato, che poi è l’operazione che si vede capitare se ritagliamo una finestrella da un pezzo di carta, la posizioniamo sul foglio con i nostri dati e la spostiamo di una posizione a destra. Come sempre, nulla di complicato, almeno fino a che non te lo nascondono dietro una serie di paroloni!
Per il momento questo è tutto. Non mi sono dimenticato che ho promesso anche di parlare della varianza e di tutte le belle cose correlate, però preferisco non mettere troppa carne al fuoco. Commenti e segnalazioni di errori, imprecisioni e incomprensibilità sono come sempre i benvenuti.

Ultimo aggiornamento: 2007-10-08 14:29

Si fa presto a dire media – parte 1

(come sempre, correzioni e suggerimenti sono i benvenuti)
Calcolare qual è la media di un insieme si direbbe un’operazione abbastanza tranquilla, e che non dovrebbe dare problemi di sorta: in fin dei conti, si sente parlare persino sui giornali di medie qua, medie là, e così via… Beh, è vero che non ci sono chissà quali concetti complicati dietro di essa, però è anche vero che non sempre la media per così dire naïf è la cosa che vorremmo davvero sapere; e quindi possiamo essere tranquillamente fregati da chi sa giocare con i numeri. Ecco dunque un po’ di informazioni che potranno aiutarvi a districarvi in mezzo alla media!
Innanzitutto, qual è il significato per così dire “filosofico” della media? È un valore che viene tirato fuori a partire da insieme di valori distinti. In genere questi valori sono monodimensionali: li possiamo insomma mettere in riga, come ad esempio le altezze dei ragazzi in una classe, simularli con tante barrette verticali e tirare fuori il nostro numerino. Non è detto che si possano fare proprio sempre delle barrette: se ad esempio calcoliamo la velocità media di un viaggio, abbiamo infiniti istanti di tempo su cui fare la media, e così sfruttiamo il trucco di usare spazio e tempo complessivi che sono stati percorsi invece che la velocità istantanea. Però avremmo potuto anche misurare la velocità ogni secondo e ritornare a vedere le nostre barrette. Esiste anche una media calcolata su dati multidimensionali. Un esempio non è tanto l’altezza media del territorio di una nazione (possiamo suddividerla in tanti pezzetti quadrati della stessa dimensione, e poi mettere i quadratini in fila invece che sparsi per il territorio), quanto il punto medio di una scarica di pallini contro un bersaglio.
media, mediana e modaIn tutti i casi, però, capita una cosa molto importante: si perde informazione. Non c’è nulla di male, intendiamoci: la ragione principale per prendere la media è proprio il fatto che non riusciamo oppure non vogliamo gestire troppa informazione, e ci accontentiamo di una specie di Bignami. La cosa a cui dobbiamo stare attenti, però, è che non esiste il metodo giusto per prendere un unico valore, come vedremo tra poco.
Chi fa statistica, in effetti, distingue ben tre tipi di media (in inglese, “average”); non è un loro vezzo, ma una necessità. Parleranno pertanto di media, mediana e moda: in inglese, i nomi sono rispettivamente mean, median e mode. La media è quella che tutti noi ci si aspetta, vale a dire la media aritmetica: si fa la somma dei elementi tra cui fare la media, si divide il risultato per il numero degli elementi stessi, e quello che esce fuori è la media. La mediana si calcola invece mettendo in fila tutti gli elementi, e prendendo il valore di quello di mezzo; se il numero di elementi presenti è pari, e quindi non c’è “quello di mezzo”, si prendono i due “più di mezzo” e si fa la loro media aritmetica. Resta infine la moda, detta anche norma, che è la meno intuitiva; eppure il suo significato è logico. Quando si dice che una cosa è “di moda”? Quando la usano tutti. Allo stesso modo, la moda di un gruppo di elementi è il valore che capita più spesso. Nel caso ci siano due o più valori con lo stesso numero di occorrenze, generalmente si dice che la moda non è definita; d’altra parte, se esiste, è sicuramente un valore tra quelli osservati, mentre la media non è detto lo sia e la mediana lo è sicuramente solo nel caso di un numero dispari di elementi in totale. Tanto per aggiungere un disegnino, nella figura di destra ho preso alcuni numeri (1, 1, 1, 2, 3, 4, 6, 12 e 15), li ho messi in fila belli ordinati, e ho indicato quali sono la loro media, mediana e moda.
Così a pelle ci si potrebbe chiedere che senso hanno mediana e moda, che possono essere ben lontane da quella che naturalmente associamo alla media, come possiamo ad esempio vedere nella figura qua a fianco, dove la moda è addirittura uno dei valori estremi della nostra distribuzione. Il punto è che ci sono alcuni tipi di misurazioni che conducono in maniera naturale a questi valori, solo che non ci facciamo mai caso.
Ad esempio, quando si vuole sapere se un bambino è più grande o più piccolo della media, non si guarda l’altezza media dei bambini ma si piglia la mediana, per due ottime ragioni: la prima è che i dati troppo lontani dalla norma vengono automaticamente resi irrilevanti, la seconda è che interessa appunto sapere quanti bambini sono più alti o più bassi (oppure più o meno pesanti). Addirittura il concetto di mediana si espande: perché limitarsi a dividere il nostro campione in due sole parti? Abbiamo così i
quartili (si divide il nostro gruppo in quattro parti), i decili (la divisione è in dieci parti), o i percentili (cento parti). Quindi se ti dicono che il tuo test è risultato nel novantasettesimo percentile, magari hai sbagliato metà delle domande e non puoi sapere cosa hanno fatto gli altri: però sai che solo il 3% ha fatto meglio di te, di poco o di tanto che sia.
Per la moda, pensate a quando vi dicono “il vostro biglietto è stato sorteggiato alla lotteria di Tu-campa-cavallo-al-colle. Ci sono dieci premi: uno di 10000 euro e nove di 1 euro”. Ora, è vero che la vostra vincita media è leggermente superiore ai 1000 euro; ma credo sarete d’accordo con me quando affermo che quello che potete aspettarvi è di avere vinto un euro, cioè la moda dei valori dei premi. Insomma, la moda ti serve quando non ti interessa un dato prettamente teorico come la media, ma vuoi sapere cosa ti puoi statisticamente aspettare per davvero. È roba per la gente coi piedi ben piantati in terra!
(nella prossima parte, racconterò di altri tipi di media: geometrica, armonica, mobile e pesata… Chissà se parlerò mai di cose turpi tipo varianza e skew che sono le damigelle d’onore della media!)

Ultimo aggiornamento: 2007-09-19 15:33

La prova del nove

(Trovate questo post tra le mie pagine di matematica light!)
Mi capita relativamente spesso di essere in giro con amici o conoscenti, parlare di operazioni matematiche elementari, e sentirmi chiedere “ma la prova del nove
funziona davvero?” Sono insomma chiare due cose: il concetto è rimasto così impresso agli alunni delle elementari che affiora anche dopo più di trent’anni, e – a parte il nome – il suo funzionamento è sempre stato visto come qualcosa di esoterico e più vicino ad Harry Potter (“accio novem!”) che a una vera proprietà matematica. D’altra parte, ci credo: a nessuna maestra alle elementari verrebbe in mente di spiegare il perché la regola funziona, ammesso che almeno loro lo sappiano. Ma finalmente potrete soddisfare la vostra pluridecennale curiosità.
provadel9.PNGInnanzitutto, forse è meglio ricordare cos’è la prova del nove. Quando si fa una moltiplicazione (247*53=13091, tanto per fare un esempio pratico) a ogni numero presente nell’operazione sostituiamo quello formato dalla somma delle sue cifre; se la somma così ottenuta ha più di una cifra, sommiamo quelle cifre e si prosegue fino a che non arriviamo a una singola cifra. Nel nostro esempio, avremo pertanto 2+4+7=13, 1+3=4; 5+3=8; 1+3+0+9+1=14, 1+4=5. A questo punto, facciamo il prodotto delle cifre dei fattori, e se serve sommiamo le cifre del risultato per arrivare ad averne una sola (4*8=32, 3+2=5). Se questa cifra è diversa da quella del risultato dell’operazione, vuol dire che abbiamo sbagliato da qualche parte; se invece è la stessa, forse siamo riusciti a fare il conto correttamente. Come ausilio pratico, si mettono i quattro numeri all’interno di una croce, come mostrato nella figura qui sotto. Non garantisco che
la posizione dei numeri nella croce, come indicata nella figura qui a sinistra, sia quella che ci insegnavano a scuola: qualche dettaglio ormai l’ho perso anch’io!
Per quali operazioni funziona la prova del nove? Addizioni, sottrazioni – basta ricordarci di sommare un 9 se il minuendo ha la somma delle cifre minore del sottraendo, come in 23-7 – e moltiplicazioni. Con le divisioni no, anche se puoi usare il trucco di rifare il calcolo “alla rovescia”, cioè vederle come moltiplicazioni, e applicare così la regola. Ad esempio, se dobbiamo verificare 31415/926 = 33 con resto 857, facciamo la prova con 33*926, cioè 6*8 = 48 e quindi 3, gli sommiamo la somma delle cifre di 857, vale a dire 2, e controlliamo se il risultato 5 è uguale alla somma delle cifre di 31415… e per fortuna lo è.
Passato lo choc di avere visto tutte queste operazioni aritmetiche tutte in una
volta, provo a spiegare perché la prova del nove funziona, e soprattutto perché a volte non funziona. Il punto di partenza è quella che tecnicamente si chiama “aritmetica modulare” e che facciamo tutti quando diciamo che “le undici del mattino più tre ore sono le due del pomeriggio”. Immagino che chi mi sta leggendo o sa già cos’è l’aritmetica modulare, oppure verrà a chiedermelo e io mi metterò a scrivere qualcosa di più completo al riguardo: per il momento mantengo la prima ipotesi. In pratica, la prova del nove non è altro che fare l’operazione modulo 9, sostituendo cioè ai numeri trovati il loro resto quando li si divide per nove. Le operazioni in aritmetica modulare funzionano per addizioni, sottrazioni e moltiplicazioni: quello che ci resta da capire è come mai il resto modulo 9 di un numero è uguale alla somma delle sue cifre, il che però è facile. Infatti 1 diviso per nove fa 0 con resto di 1; 10 diviso 9 fa 1 con resto di 1; 100 diviso 9 fa 11 con resto di 1; e così via. Quindi se riprendiamo il nostro 247 e lo scriviamo come 2*100 + 4*10 + 7 scopriamo che il suo resto diviso per 9 è 2+4+7… esattamente la somma delle sue cifre.
provadel9.PNGÈ stato pesante, lo so. Ma adesso viene fuori il bello. Perché si fa la prova “del nove” e non “del sette” oppure “del quindici”? Dal punto di vista matematico, è esattamente la stessa cosa: sempre di aritmetica modulare di tratta. Solo che sommare le cifre di un numero è molto più semplice di calcolare il suo resto modulo 7 oppure 15 (provateci voi, se siete dei temerari). Così ci si limita a fare un calcolo facile, accettando il fatto che non tutti gli errori vengono trovati. Infatti, se ad esempio si sostituisce uno 0 con un 9 la somma finale delle cifre del numero non cambia; ma quel che è più preoccupante è che se ci sbagliamo e scambiamo tra di loro due cifre (10391 invece che 13091) la somma delle cifre è per definizione la stessa, e chiunque sia appena un po’ dislessico – oppure sbagli semplicemente a incolonnare i prodotti parziali – rischia grosso.
Ma io una soluzione ce l’avrei anche: adottare la prova dell’undici. La logica che sta dietro è esattamente la stessa, solo che si calcola il resto della divisione per 11 e non di quella per 9. Calcolare questo resto è un po’ più complicato, ma nemmeno poi troppo: il metodo consiste nel sommare e sottrarre alternativamente le cifre del numero dato, partendo da destra e andando a sinistra. Se si va sottozero, basta naturalmente aggiungere 11. I resti che possiamo ottenere saranno i numeri da 0 a 10; nell’operazione di cui sopra avremo per la precisione 7-4+2=5, 3-5=9 (previa l’aggiunta di 11); 1-9+0-3+1 = 1; 9*5=45; 5-4=1. A parte vedere se si è
bravi anche a fare le sottrazioni, il che non sarebbe poi così male, il vero vantaggio è quello di potere accorgersi di avere scambiato di posto due cifre, oppure non essersi spostati bene a sinistra quando si è fatta la moltiplicazione. Se avessimo ad esempio allineato a destra i due prodotti parziali 741 e 1235, la somma sarebbe stata 1976, e la prova del nove ci avrebbe detto nulla di strano: la somma delle cifre è sempre 5. La prova dell’undici, in compenso, avrebbe fatto subito suonare un campanello d’allarme: avremmo avuto come risultato 7 (6-7+9-1) e non 1. E scusate se è poco!

Ultimo aggiornamento: 2007-07-27 17:17