Se abbiamo un cerchio di raggio $r$, la sua circonferenza è $2\pi r$. Questo è facile. Se abbiamo un’ellisse di semiassi $a$ e $b$, il suo perimetro è $P(a,b) = 4aE(e^2)$, dove l’eccentricità $e$ è data da $\sqrt{a^2-b^2}/a$ ed $E$ è l’integrale $E(x) = \int_{0}^{\pi/2}(1-x \sin^2\theta)^{1/2}d\theta$. Un po’ meno facile, considerato poi che quell’integrale è un integrale ellittico del secondo tipo (poca fantasia nei nomi, concordo) e non è risolubile se non con metodi numerici.
Che si può fare, allora? Si può provare a cercare un’approssimazione e accontentarsi di quella. Il solito Ramanujan trovò questa formula:
dove $\lambda = (a-b)/(a+b)$. Io non ho idea se questa formula sia davvero venuta a Ramanujan in sogno, ma è di una precisione incredibile. Tenete conto che queste formule in genere sono sempre meno precise man mano che l’eccentricità $e$ aumenta; John D. Cook mostra che se prendiamo l’orbita del pianeta nano Sedna che ha un’eccentricità 0,8549 (Plutone, per confronto, ha 0,2488 e la terra 0,0167) e un semiasse maggiore di 76 miliardi di chilometri, l’errore commesso con questa formula è di 53 chilometri.
La cosa ancora più bella di questa approssimazione è che l’errore relativo è limitato, e resta sempre sotto lo 0,0051% anche con un’eccentricità massima. Direi che ci si può accontentare!
(figura di ZetaZeti, da Wikimedia Commons)
Ultimo aggiornamento: 2024-09-25 19:35
Buffo, pochi giorni fa ho letto questo:
https://www.johndcook.com/blog/2024/09/22/ellipse-perimeter-approx/
ma con λ = (a − b)/(a + b)!
evidentemente ho sbagliato a copiare (ho anche citato l’articolo di Cook, non rubo mai nulla di nascosto…)
ho letto di fretta, ma mi ricordavo l’equazione a mente…