Il problema di Brocard

4! + 1 = 5²; 5! + 1 = 11²; 7! + 1 = 71²Il fattoriale di 4 è 24; se gli sommiamo 1 otteniamo 25, che è il quadrato di 5. Il fattoriale di 5 è 120; sommandogli 1 otteniamo 121, che è il quadrato di 11. Il fattoriale di 7 è 5040; sommandogli 1 otteniamo 5041, che è il quadrato di 71. E poi? Basta, almeno per quanto ne sappiamo.

Il problema di Brocard è stato posto da Henri Brocard nel 1876, ed è stato riscoperto indipendentemente da altri matematici, tra cui Ramanujan. La congettura è che questi siano gli unici casi in cui il fattoriale di un numero sia un’unità inferiore a un quadrato perfetto: sono stati esclusi altri risultati fino a $10^{12}$, ma non si è nemmeno riusciti a dimostrare che il numero di soluzioni possibili sia finito. (La cosa sarebbe un corollario della congettura abc, ma la “dimostrazione” di Shinichi Mochizuki non è stata accettata dalla comunità matematica).

Del resto Brocard, anche se la sua carriera matematica è stata nel campo della geometria, è noto anche per un’altra sua congettura: se $p$ e $q$ sono due primi dispari consecutivi (nel senso che non ci sono altri primi tra di esso: per esempio 89 e 97 sono primi consecutivi) allora ci sono almeno quattro numeri primi tra $p^2$ e $q^2$. Il mio commento su queste proposizioni ricicla quanto Gauss scrisse a W. M. Olbers: «Confesso che il teorema di Fermat, come proposizione isolata ha davvero scarso interesse per me, poiché potrei facilmente formulare una gran quantità di tali proposizioni, che non si potrebbero né provare né confutare». (Ma secondo me Gauss rosicava…)

Ultimo aggiornamento: 2024-09-11 08:37

2 pensieri su “Il problema di Brocard

  1. Lele

    Ho cliccato su “Lascia una risposta”. Però lascio una domanda.
    Per i non matematici e gli ignoranti in genere, chi mi spiega quel numero scritto così: 10, poi un 1 in apice, poi 2.
    Quanto vale? Come si legge? Cosa significa? (E perché non si riesce a selezionare nel testo?)

    1. .mau. Autore articolo

      È un mio errore, sarebbe 10^12, e non si può cliccare perché è scritto in MathJax

I commenti sono chiusi.