Supponete che qualche giorno prima della partita di andata dei quarti di finale della Champions League vi arrivi una email che dice “ho sviluppato un algoritmo che prevede correttamente i risultati sportivi. Per dimostrarGlielo, ecco quali sono le quattro squadre che passeranno alle semifinali:” e un elenco di quattro squadre. La mail termina con “per favore, non divulgate la notizia, per ovvie ragioni”. Voi non ci fate molto caso: quando però le partite si sono concluse, vi arriva una seconda email, che dice “Le quattro squadre che hanno passato il turno sono state proprio quelle da me previste. Perché Lei si possa sincerare della potenza dei miei algoritmi, Le dico quali saranno le finaliste”; e stavolta ci sono due nomi. Fate mente locale, vi ricordate che effettivamente l’interlocutore aveva ragione – e dire che non avreste scommesso un euro su una delle squadre – e aspettate incuriositi. Anche stavolta le predizioni si sono rivelate corrette: arriva una terza mail che dice “Se Lei vuole sapere il nome della squadra che vincerà la Champions League, invii cento euro a questo numero di conto corrente. Mi raccomando, però: non diffonda la notizia, altrimenti le quote crollerebbero.” Che fareste? Mandereste all’anonimo i soldi, pronti a scommetterne ben di più? Se avete risposto sì, forse è meglio che continuiate a leggere; altrimenti la lettura non sarà così importante ma spero sia comunque piacevole.
Il nostro anonimo interlocutore aveva infatti iniziato a spedire 128.000 email – tanto non gli costava nulla – divise in sedici gruppi, ciascuno dei quali aveva una quaterna diversa di semifinaliste previste. Una volta visti i risultati, il secondo gruppo di spedizioni è stato fatto solo agli 8000 destinatari che avevano ricevuto la predizione corretta (suppongo che le probabilità che passi il turno una squadra oppure l’altra siano le stesse, ma il ragionamento vale lo stesso); il terzo messaggio con la richiesta di denaro, infine, solo ai 2000 per cui anche i risultati delle semifinali erano stati previsti correttamente. La maggior parte delle persone ha ricevuto solo la prima mail con le previsioni errate, ma voi eravate tra i duemila “fortunati”, e con buona probabilità sgancerete al nostro ignoto amico cento euro per un’ulteriore predizione assolutamente casuale. Se anche solo la metà dei polli ci casca, sono 100000 euro in saccoccia senza troppa fatica: niente male, vero?
Purtroppo l’evoluzione non ha insegnato a noi umani come trattare le probabilità, soprattutto le probabilità a posteriori. Quello dell’esempio è un caso limite: prima dell’invio della prima email avete una possibilità su 64 di ricevere tutti e sei i risultati corretti, e quando vi arriva la lettera con la richiesta di un piccolo contributo tendete a pensare ancora a quella probabilità, mentre quella a posteriori è ovviamente la certezza nel vostro caso (e l’impossibilità negli altri 63 casi… la probabilità è come l’energia, nulla si crea e nulla si distrugge). Ma ci sono anche altri casi in cui le probabilità a posteriori sono sovrastimate e non sottostimate. Il caso classico che viene fatto è quello del test per l’Aids. Supponiamo che il test rapido abbia una probabilità su 100 di dare un falso positivo (una persona sana che risulti aver contratto l’infezione), e che il vostro stile di vita assai morigerato sia tale che a priori avete una possibilità su 1000 di essere infetti. Andate a fare il test, e vi richiamano dicendo che il test rapido è risultato positivo e quindi occorre sottoporvi a un test più accurato. Quant’è la probabilità a posteriori (cioè dopo la positività al test rapido) che voi siate effettivamente infetti? il 99%? No, è molto meno. Su un milione di persone con il vostro stile di vita, infatti, solo 1000 sono statisticamente infette. Il test darà risultato positivo su questi 1000 e sull’1% degli altri 999000, cioè su 9990 persone (che arrotondo a 10000 per fare meglio i conti). Quindi ci sono 1000 infetti su quasi 11000 positivi all’esame, pari a meno del 9%. In altre parole: c’è da preoccuparsi (siamo passati da una probabilitàa priori dello 0,1% a quasi il 9%) ma non avete ancora un piede e mezzo nella fossa!
Tutti questi conti sono ben noti da secoli ai matematici, e la formula che calcola le probabilità a posteriori a partire da quelle a priori e dai risultati si chiama Teorema di Bayes. Il fatto che sia ben nota non cambia però le carte in tavola: continua a risultare poco intuitiva, e quindi anche persone con una buona conoscenza scientifica ci possono cascare.
C’è anche un altro fenomeno relativo alle probabilità che fa prendere lucciole per lanterne, anche se più che matematico è probabilmente di natura psicologica, ed è l’aggiustamento probabilistico a posteriori. Inizio con un esempio che di matematico non ha nulla: le centurie di Nostradamus. Adesso non sono molto di moda, ma negli anni ’70 del secolo scorso c’erano vari studiosi che invariabilmente mostravano come Nostradamus avesse previsto i vari fatti accaduti: una volta verificatisi tali fatti, i riferimenti nel testo del veggente erano infatti inequivocabilmente chiari. Purtroppo le previsioni per il futuro non sono mai state così chiare, un po’ come quelle degli astrologi: o magari è tutto un complotto delle società di assicurazione che non vogliono finire in rovina, e quindi stanno attente a eliminare tutti i possibili metodi per conoscere davveo il futuro.
Spostandoci ìn un ambito piu matematico ancorché qualitativo, prendo un esempio purtroppo tragico: il terremoto abruzzese di questi giorni, e la coda di polemiche perché le previsioni di Gioacchino Giampiero Giuliani non sono state tenute in considerazione. Guardiamo le cose da un punto di vista strettamente matematico. La probabilità a priori che ci sia un terremoto di intensità distruttiva in un giorno specifico in una zona specifica (diciamo con l’epicentro in un raggio di quindici km da un punto indicato) è molto bassa, per fortuna: e lo è anche se ci si trova in una zona sismica, e comincia a diventare significativo – ma non ancora elevato, sempre per fortuna – in presenza di alcuni segnali. Immaginiamo che Giuliani avesse effettivamente previsto il terremoto del 6 aprile all’Aquila, ma non avesse detto nulla perché in fin dei conti era già sotto inchiesta per procurato allarme. Resta il fatto che il 28 marzo aveva affermato che il terremoto sarebbe stato il giorno successivo (sette giorni prima della data effettiva) a Sulmona (cinquanta chilometri in linea d’aria dall’Aquila). Chi dice “ci aveva azzeccato” è come chi pensa di aver vinto alla lotteria perché la differenza tra il numero del suo biglietto e quello vincente è solo 14: non esattamente un gran risultato. Eppure, proprio perché l’evento è così raro e distruttivo, si pensa inconsciamente che un’approssimazione di questo tipo sia accettabile. Visto che non possiamo riprodurre a piacere i terremoti, non abbiamo un modo di valutare aprioristicamente la probabilità che da una serie di segnali si giunga a un sisma. D’altra parte, mentre in linea di principio ha senso avere qualche allarme a vuoto, non possiamo nemmeno averne troppi; non tanto per l’effetto “al lupo al lupo”, quanto per gli ovvi problemi organizzativi.
La morale di tutto questo è semplice: fate sempre attenzione quando valutate delle probabilità, e non fidatevi degli argomenti spannometrici!
Ultimo aggiornamento: 2009-04-11 07:00