Innanzitutto buon Natale, così non me lo dimentico :-)
Conoscete tutti il rapporto aureo, il numero che divide un segmento in due parti che hanno rapporto uguale a quello tra il segmento stesso e la parte maggiore: $\frac{a+b}{a} = \frac{a}{b} = \varphi$; o se preferite la soluzione positiva dell’equazione $x^2 = x + 1$. È molto meno noto il suo fratello, il rapporto argenteo (o numero argenteo) σ. Esso si definisce in modo simile: è il numero dato dall’uguaglianza $\frac{2a+b}{a} = \frac{a}{b} = \sigma$, o se preferite la soluzione positiva dell’equazione $x^2 = 2x + 1$.
Facendo i conti, il rapporto argenteo vale $1 + \sqrt{2}$, cioè circa 2,41421 o se preferite circa 70/29. In figura in alto vedete un rettangolo argenteo che contiene un altro rettangolo argenteo ottenuto togliendo i due quadrati verdi; da qui togliendo i due quadrati rossi si ottiene un terzo rettangolo argenteo.
Il rapporto argenteo non è carino come quello aureo, ma ha comunque alcune interessanti proprietà. Se per esempio consideriamo l’iterazione $x \gets \tfrac12 (x^2+1) /(x-1)$ per $x_0 \in [2,3]$, abbiamo che σ è un punto fisso superstabile: cioè la derivata della funzione in quel punto è nulla, il che significa che la convergenza è estremamente rapida. Inoltre, lo sviluppo in frazione continua del numero argenteo è σ = [2; 2, 2, 2, 2, …] (confrontatela con quella del numero aureo ϕ = [1; 1, 1, 1, 1, …]), con 1/σ = [0; 2, 2, 2, 2, …]; il rapporto argenteo è un numero di Pisot (il secondo, dopo il rapporto aureo), il che significa che le sue potenze sono ottime approssimazioni di numeri interi.
Dall’iterazione $x \gets \sqrt{1 +2x \vphantom{/} }$ otteniamo poi il radicale innestato σ = $\sqrt{1 +2\sqrt{1 +2\sqrt{1 +\cdots}}} \;.$ Troviamo un rettangolo argenteo anche all’interno di un ottagono regolare, come mostrato in figura. Altre proprietà del numero argenteo: $1 =\frac{1}{\sigma -1} + \frac{1}{\sigma +1}$, $\sigma =\frac{\sigma +1}{\sigma -1}$, $ \sigma =2\sum_{n=0}^{\infty} \sigma^{-2n}$.
Un’ultima curiosità: nella figura qui sotto vediamo come dei rettangoli di rapporto tra i lati σ−1 (blu e verde), σ/(σ−1) (rosso e marrone) e σ (viola, giallo) tassellano un quadrato.

(Immagine dei rettangoli non proprio argentei di Zilverspreeuw, da Wikimedia Commons)
Ultimo aggiornamento: 2024-12-25 20:22
Avete presenti gli utensili di plastica neri? Un articolo pubblicato lo scorso ottobre sulla rivista Chemosphere ha sollevato pesanti dubbi sulla loro tossicità, e la notizia è balzata subito sulle prime pagine dei media americani. Da noi non ho visto nulla, ma non significa molto. Abbiamo avuto titoli come “Quegli utensili di cucina così carino potrebbero stare per avvelenarvi, dice uno studio. Ecco che dovete fare”, dal L.A. Times. Molti americani hanno buttato via i loro utensili.
A chi non è capitato di dover far passare un mobile piuttosto grande attraverso una porta, e chiedersi come diavolo riuscirci? Douglas Adams ci aveva persino fatto una gag, nel suo libro Agenzia Investigativa Olistica Dirk Gently. Ma come sapete i matematici non hanno un grande senso dell’umorismo: quindi qualcuno ha provato a darne una formulazione matematica. 
Quando si gioca ad alcuni giochi, spesso è necessario lanciare un dado non standard, per esempio perché deve dare un valore da 1 a 10 con la stessa probabilità. In quel caso si dice “lancia un d10”. Oggi non è molto difficile simulare uno di questi lanci: se su Google fate una ricerca “dice d10” avete immediatamente il risultato, oppure potete andare su un sito come 

