776 – algebra
I numeri di Fermat sono quelli della forma Fn = 2^(2^n)) + 1. Una congettura di Fermat affermava che se n è primo, allora Fn è primo (“numero primo di Fermat”). I primi numeri in effetti lo sono: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. Peccato che non si conosca nessun altro primo di Fermat. Ma non è questo il problema di oggi. Dimostrate che vale sempre l’uguaglianza F0F1F2…Fk−1 = Fk − 2.

(trovate un aiutino sul mio sito, alla pagina https://xmau.com/quizzini/p776.html; la risposta verrà postata lì il prossimo mercoledì. Problema 28 da Stephen Siklos, Advanced Problems in Mathematics.)



Vi ricordate di 2048, il gioco dove dovevate ottenere la maggior potenza di due possibile? Anche 