Usare equamente una moneta iniqua


Probabilmente conoscete il quizzino che vi chiede di usare una moneta truccata, che se lanciata esce testa con probabilità $p$ compresa strettamente tra 1/2 e 1, per ottenere una probabilità del 50% esatto di vincita. La risposta, che si dice essere dovuta direttamente a John von Neumann (ma non ne sarei così certo) è la seguente: “Lanciate la moneta due volte: se il risultato è prima testa poi croce (nel seguito, TC) vince il primo giocatore; se è prima croce e poi testa (CT) vince il secondo giocatore; altrimenti si ricomincia da capo”. L’idea, come avrete capito, è di trovare due combinazioni simmetriche, in modo che la loro possibilità di uscita sia la stessa.

La fregatura è che potrebbero volerci molti lanci per avere la nostra successione TC oppure CT; se per esempio $p = \frac{3}{4}$, la probabilità di dover ripartire da capo dopo due lanci è il 62.5%. Esistono dei modi per ridurre il numero di lanci; possiamo per esempio dire che sopo il quarto lancio TTCC equivale a TC e CCTT a CT, dopo l’ottavo lancio TTTTCCCC equivale a TC e CCCCTTTT a CT, e così via. Ma il rischio di proseguire all’infinito c’è sempre, e uno si può giustamente chiedere se esiste una strategia di tip diverso che garantisca di riuscire a ottenere esattamente il 50% dopo un numero finito di lanci. Di per sé la cosa non è a priori impossibile. Immaginiamo di lanciare la moneta tre volte: uscirà TT con probabilità $p^2$, e se quindi avessimo una moneta con $p = \sqrt{2}/2$ questa probabilità sarà esattamente 1/2. Potrebbe insomma darsi che a seconda del valore di $p$ si possa trovare una combinazione legata a un numero finito di lanci che esca con probabilità 1/2?

La risposta è no, e lo si può vedere con un esempio pratico. Supponiamo che $p = \frac{2}{3}$ e immaginiamo di lanciare la moneta $n$ volte. Avremo allora $2^n$ possibili eventi, ciascuno con probabilità della forma $\frac{k}{3^n}$: il denominatore è dovuto al fatto che sia le teste che le croci hanno una probabilità della forma $\frac{h}{3}$ con $h$ che può valere 1 oppure 2. Poiché la somma di tutte le probabilità deve essere 1, cioè $\frac{3^n}{3^n}$, è immediato che non potremmo dividere gli eventi in due gruppi della stessa probabilità, perché se moltiplichiamo le probabilità per $3^n$ avremo un insieme di numeri interi la cui somma è un numero dispari.

Fine della storia? Ovviamente no. Un Vero Matematico non si sarebbe sporcato le mani con tutti questi conti. Avrebbe notato che per un qualunque numero di lanci di monete le combinazioni possibili sono in numero finito; pertanto l’insieme di tutte le combinazioni possibili con un qualunque numero di lanci sarà un’infinità numerabile. Peccato che i valori di probabilità tra 1/2 e 1 siano più che numerabili, e quindi ne resterà un’infinità (più che numerabile) che non potrà essere coperta da quei casi…

Non so voi, ma io (che non sono un intuizionista) trovo entrambi gli approcci interessanti, ciascuno a modo suo. Uno può sporcarsi le mani e usare argomenti alla portata di un ragazzino di terza media piuttosto sveglio, oppure usare i cannoni e sfruttare una teoria molto potente. Ma è questo il bello della matematica: non esiste una via regia, ma ci sono tante strade panoramiche!

(immagine da PNGwing)

Ultimo aggiornamento: 2024-07-17 12:25

4 pensieri su “Usare equamente una moneta iniqua

    1. .mau. Autore articolo

      “esce testa/croce” è un matematismo. Non saprei trovare un sinonimo abbastanza breve per dire “la moneta cade mostrando testa/croce”.

  1. m.fisk

    D’accordo; ma nella frase “esce testa” il soggetto è «testa», non «moneta»

I commenti sono chiusi.