Archivi categoria: matematica_light

Linee dei numeri farlocche

@matematica

Viviamo in un mondo di fake news. Non vi è mai venuto in mente che anche in matematica possiamo avere qualcosa di fake? (Ho usato farlocco nel titolo per non scriverlo in inglese). James Propp in questo post ha definito “fake number lines” le linee dei numeri che sembrano essere giuste, ma in realtà non funzionano.

Ma facciamo un passo indietro: già il concetto di “linea dei numeri” non è mica così semplice come sembra. È vero che qualcuno potrebbe pensare che i greci ce l’avessero in mente, visto che associavano a ogni numero un segmento proporzionale a uno specifico segmento dato, ma questa è una nostra razionalizzazione a posteriori, ma non è esattamente così. Tutto il loro armamentario serviva semplicemente per confrontare due numeri, ma a nessuno di loro è venuto in mente di prendere “tutti i numeri” e costruire una linea che li contenesse. (Notate le virgolette…) Questo perché la cosa avrebbe cozzato contro il loro mantra per cui non è possibile considerare in un colpo solo tutti i numeri, o anche solo tutte le frazioni tra 0 e 1: esse sono un numero infinito, e l’infinito attuale era verboten. Tutto quello che si poteva fare è dire che si poteva avere una moltitudine maggiore di una qualunque moltitudine data. Ciò dovrebbe farvi intuire che il fatto che noi diamo per scontato il concetto di linea dei numeri è un risultato davvero incredibile, una delle grandi conquiste della matematica.

Ma guardiamo la linea dei numeri in un modo diverso. Cosa succede se cominciamo a tagliarla a pezzetti? Se i suoi punti sono discreti, degli “atomi”, a un certo punto arriviamo ad avere un atomo, che per definizione è indivisibile, e abbiamo un problema. Se i punti sono continui, il problema è cosa succede sul punto esattamente sotto la lama di taglio, che immaginiamo essere puntiforme. Non per nulla Aristotele non voleva l’infinito assoluto: in questo modo poteva dire che tagliava la retta, lasciava il punto di taglio da una parte e non si preoccupava di cosa succedeva dall’altra parte. Peccato però che ci siano tante linee farlocche. La più nota è quella dei razionali, ma potremo per esempio usare i numeri diadici, quelli che si ottengono continuando a dividere a metà l’unità, o più prosaicamente i numeri che in formato decimale hanno un numero finito di cifre. In entrambi questi esempi non riusciamo a trovare il punto corrispondente a 1/3, anche se possiamo avvicinarci a piacere a esso (sempre l’infinito potenziale!)

Nel suo post, Propp spiega che l’assioma di completezza creato da Richard Dedekind, e che sostanzialmente afferma

“Se tutti i punti di una retta si dividono in due classi disgiunte, in modo tale che ogni punto della prima classe è a sinistra di ogni punto della seconda classe, esiste uno e un solo punto che produce questa divisione, tagliando la retta in due porzioni”

(l’unicità non è un problema, se ce ne fossero due potremo trovare un terzo punto in mezzo che non può stare da nessuna delle due parti) è una fregatura che ci costringe a buttare via tutte queste linee farlocche. Guardate il disegno qui sotto:

dove sta il punto p?

Dove può stare il punto p? O nella parte sinistra o nella parte destra, non ci sono dubbi. Ma questo significa che dobbiamo averlo anche nel caso in cui nei nostri esempi sopra cerchiamo 1/3, oppure nel caso dei numeri razionali cerchiamo la radice cubica di 2 (per la radice quadrata varrebbe lo stesso, ma quella almeno riusciamo a disegnarla). Nella versione che vediamo solitamente del taglio di Dedekind il punto è al di fuori del taglio: per esempio possiamo avere tutti i numeri che elevati al cubo sono minori di 2 e quelli che elevati al cubo sono maggiori di 2. Ma la cosa non cambia: l’assioma di completezza ci costringe a dire che quel punto esiste. Insomma, se vogliamo una linea dei numeri ben fatta siamo costretti ad avere i numeri reali. Carino, no?

Carnevale della Matematica #183

“Il merlo merlino”
(Poesia gaussiana)

logo-carnevale_matematica
Benvenuti all’edizione numero 183 del Carnevale della matematica, dal tema “2025”! Come vi siete sicuramente accorti, abbiamo saltato il mese di dicembre. Capita. Il numero d’ordine è però quello immediatamente successivo a quello di novembre, e Dioniso come sempre ci presenta la sua cellula musicale: cadenza molto semplice (sol-do), ma con un salto di settima minore che non è usuale.

Quali sono le proprietà interessanti del 183? Innanzitutto è un numero perfetto totiente, l’ottavo. La φ(n) di Eulero, la funzione totiente, è quella che conta i numeri minori di n primi con esso: nel caso di 183 = 3·61 abbiamo φ(183) = 120; se continuiamo a iterare finché non arriviamo a 1 abbiamo φ(120) = 32, φ(32) = 16, φ(16) = 8, φ(8) = 4, φ(4) = 2 e finalmente φ(2) = 1. Se sommiamo tutti questi numeri otteniamo esattamente 183. Inoltre, poiché 183 = 13² + 13 + 1 e 13 è un numero primo, 183 è il numero di punti del piano proiettivo costruito su ℤ13; è inoltre il numero di alberi di lunghezza minore o uguale a 4 dove ogni nodo ha al più due rami (se passiamo a una lunghezza minore o uguale a 5 si arriva a 33673…) e il numero di semiordini possibili con quattro elementi, qualunque cosa sia un semiordine (ho guardato in fretta la pagina Wikipedia, ma non l’ho mica capito…)

Passiamo ai contributi! Innanzitutto, perché il tema è 2025? Ovviamente perché questo è l’anno 2025, ma anche perché esso è un numero con tante proprietà, e visto che immagino che nessuno di noi parteciperà al Carnevale della matematica tanto valeva parlarne ora.


Annalisa Santi recupera un suo post del 2018, Fondazione Prada…arte e curiosità matematiche. Come ci spiega,

Il tema “2025” di questo primo Carnevale del nuovo anno mi ha fatto rispolverare un articolo in cui, dopo una intrigante visita al museo Prada, parlai dei numeri naturali con configurazioni geometriche di punti.
In tali configurazioni, dette anche numeri figurati o poligonali, spiccano gli gnomoni, i numeri quadrati e i numeri triangolari.
I numeri 1, 4, 9, 16, 25, … 2025 sono considerati numeri quadrati perché, intesi come punti, possono essere disposti in un quadrato.
Evidenziarlo per il numero 2025 richiederebbe certo troppo spazio ma per uno più piccolo, tipo 3 e 4, si può notare che i punti situati a destra e al di sotto delle linee che separano detti punti formano quello che i Pitagorici chiamavano uno gnomone e che così si definisce:
“sottraendo da un quadrato il quadrato immediatamente precedente si ottiene uno gnomone, che è sempre un numero dispari”, che in simboli si rappresenta:
(n + 1)² – n² = 2n + 1
Quindi lo gnomone di n = 45 (n² = 2025) è 91!
Inoltre, partendo da 1 e aggiungendo lo gnomone 3, poi lo gnomone 5, e così via si ricava che:
“un generico numero quadrato si ottiene sommando i numeri dispari, a partire dall’unità” e che in simboli si rappresenta:
n² = 1 + 3 + 5 + 7…….. + (2n – 1)


Gli amici di MaddMaths! declinano invece il 2025 alla rovescia, nel senso di raccontare quello che hanno fatto nel 2024.
Com’è stato il 2024 di MaddMaths! ?: [NdC: il testo originale era pieno di collegamenti che non metto. Potete trovarli cliccando sul post…]
Un altro anno è passato, e questo 2024, ha mantenuto solo poche delle sue potenzialità, mancandone tante altre. Noi, come diceva Voltaire, per ora coltiviamo il nostro orticello, e durante l’anno appena trascorso abbiamo finalmente deciso di dare vita all’Associazione MaddMaths!, un ente no profit del terzo settore che dovrebbe servire a portare avanti progetti di promozione della matematica. Molti di voi hanno già deciso di associarsi e speriamo che ci siano altre persone che prendano presto la stessa decisione. Più siamo e più abbiamo forza per organizzare nuove cose. Abbiamo già fatto due assemblee plenarie, ma tanto c’è ancora da fare. Vi aspettiamo!
Cosa farà MaddMaths! nel 2025 lo scopriremo presto, ma intanto nel 2024 abbiamo spaziato: dal nostro podcast di didattica della matematica (fatto con l’UMI-CIIM e AIRDM) alle tante recensioni di libri, e poi come al solito la Giornata Internazionale della Matematica è stata importante. Oltre al podcast sulla didattica, abbiamo creato due podcast nuovi di zecca: Sulle tracce del Detective Maxwell di Edoardo Provenzi e Musica Razionale di Paolo Soffientini e Sebastiano De Gennario. Ci sono state due nuove serie: Una chiacchierata sulla topologia di Gabriele Belegni e La matematica è piena di Eulero! di alcuni amici di MaddMaths! e tre nuovi video della nostra matematica danzante Raffaella Mulas. E non dimentichiamo La lente matematica di Marco Menale e i nostri favolosi Librini. E un piccolo grande evento ha illuminato l’ultimo terzo dell’anno: da settembre i Rudi Mathematici hanno raggiunto MaddMaths! con un loro angolo dedicato! Abbiamo partecipato alla Festa delle Donne Matematiche a Napoli, al Festival della Scienza di Genova, alla festa per Pino Rosolini (sempre a Genova), al Comics&Science Palace. La nostra Madd-Letter è andata avanti con 12 edizioni normali e 3 speciali.

Inoltre hanno raccontato anche Alcuni notevoli risultati matematici del 2024:
Geometria, algebra, topologia, intelligenza artificiale e dinamica dei fluidi hanno caratterizzato il 2024 della Matematica. La redazione di MaddMaths! ha raccolto alcuni di questi risultati notevoli.

Amolamatematica preferisce invece concentrarsi sugli errori da contrastare:

“Alla ricerca di uno svolgimento adeguato del tema assegnato, ho fatto come gli studenti quando devono scrivere un tema in classe: ho scritto 2025 in grande su un foglio e ho cominciato a pensare. Dal teorema di Nicomaco al semplice quadrato, sul 2025 come anno matematico è stato scritto e proposto un po’ di tutto. Mi sono, quindi, fermata al numero: 2025, la cui somma delle cifre è 9. Per questo motivo e forse perché, ultimamente, i miei pensieri erano focalizzati sul tema dell’errore, ho deciso di parlare, ancora una volta, della prova del 9 per verificare l’esattezza delle quattro operazioni. Come mio solito, non l’ho fatto da sola, ma attingendo dalla rete alcuni suggerimenti e riorganizzandoli come in un collage.”

Il mio post sul 2025 è invece questo.



E ora vediamo i contributi generici di questo periodo.

Cominciamo dai Rudi Mathematici, che come sapete ora sono ospitati presso MaddMaths.

A dicembre è uscito RM311: oltre che nel solito archivio del sito di RM, adesso si può raggiungere anche direttamente dal blog su MaddMaths, perché lì ci finiscono anche le newsletter che accompagnano l’uscita di ogni numero dell’e-zine.

E, sempre a dicembre, è uscito anche il solito Calendario di RM, che ovviamente del tutto “solito” non può essere, un po’ perché gli anni cambiano, un po’ perché anche i nomi dei matematici presenti nelle opportune caselline si arricchiscono, ovviamente .

Ci sono poi i post relativi alle soluzioni dei problemi pubblicati sull’edizione cartacea di Le Scienze: qui il passaggio è in un certo senso doppio, perché all’interno dei post sul blog di MM! c’è il link per raggiungere l’articolo di soluzione pubblicato sul sito di Le Scienze. Il problema di dicembre parlava di “Pacchi di Natale”, mentre quello precedente di Novembre si avventurava in un improbabile torneo di tennis.

C’è poi Problemi Classici – Semplificazioni molto semplici. Avete presente come si semplificano le frazioni? Bene, dimenticatevelo. Vi spieghiamo noi un metodo semplice e che non richiede troppi calcoli.

Poi, vabbè… il blog viene ripopolato un po’ a caso, e insomma, almeno in questi primi mesi, non funziona proprio come un blog strettamente cronologico. Però citiamo almeno un vero classico, noto a quasi tutti, che parla di cammelli ed è illustrato con dromedari, perché ha scatenato un po’ di commenti.

E per farmi arrabbiare, ieri sera è anche stato pubblicato RM 312!


Per quanto riguarda MaddMaths!, oltre ai post dei Rudi Mathematici indicati sopra, c’è tanta roba.

Anno nuovo, podcast nuovo: Benvenuti a “Nodi da Sciogliere”, il podcast a cura di Nicoletta Tribastone che vi porta nel magico mondo dei racconti di Lewis Carroll, dove la fantasia si intreccia con la logica e la matematica. In ogni episodio esploreremo uno dei racconti tratti dalla sua raccolta “10 Nodi da Sciogliere”, svelando i segreti nascosti tra le righe e invitandovi a mettere alla prova il vostro ingegno, cominciando da Nodi da sciogliere – Episodio 1: Folletto, portali su e giù

Ricordo di Adam Atkinson Pochi giorni fa è venuto a mancare Adam Atkinson, esperto di matematica ricreativa e collaboratore occasionale di MaddMaths!. Daniele Aurelio ci racconta qualche cosa della loro amicizia.

La storia di un divano (e ora sappiamo che forma ha) Pochi giorni fa sul sito di preprint ArXiv, il matematico Jineon Baek ha pubblicato un preprint in cui annuncia la soluzione di un problema matematico abbastanza inusuale: qual è l’area del più grande divano che può essere fatto passare per un corridoio di larghezza costante a forma di L? In attesa di sapere se questo risultato sarà confermato, Riccardo Moraschi ci racconta di cosa si tratta.

Come visualizzare la moltiplicazione dei numeri naturali? Costruiamo un grafo! Alessandro Zaccagnini ci racconta di un progetto che ha realizzato con le docenti Maria Chiara Gullo e Lorenza Serventi dell’Istituto Comprensivo “Guatelli” di Collecchio (Parma), nel quale hanno fatto costruire agli allievi di due classi terze della Secondaria di primo grado due “grafi,” uno bidimensionale e l’altro tridimensionale, associati alla moltiplicazione dei numeri naturali; dopo la costruzione hanno usato gli oggetti per ottenere informazioni teoriche sulle proprietà dell’operazione. Vediamo cosa ne è venuto fuori.

Per la collana “Rivoluzioni Matematiche”:
Rivoluzioni matematiche: il Teorema del Dini della funzione implicita di Eugenio Montefusco Con il numero di Gennaiode Le Scienze troverete in allegato il ventottesimo dei volumi della collana dedicata ad alcuni tra i maggiori teoremi matematici (che da trenta sono diventati quaranta!). La collana è stata elaborata in collaborazione con la redazione di MaddMaths!. Questo nuovo volume è dedicato al teorema di Dini sulle funzioni implicite ed è scritto da Eugenio Montefusco.

Rivoluzioni Matematiche: il teorema di Weierstrass di Francisco Facchinei Con il numero di Dicembre de Le Scienze troverete in allegato il ventisettesimo dei trenta volumi della collana dedicata ad alcuni tra i maggiori teoremi matematici. La collana è stata elaborata in collaborazione con la redazione di MaddMaths!. Questo nuovo volume è dedicato al teorema di Weierstrass sui massimi e minimi delle funzioni ed è scritto da Francisco Facchinei.

Per le News di Stefano Pisani:
Scacchi. Ecco quanto il cavallo è più veloce del re Negli scacchi, il cavallo si muove più “velocemente” (un po’ come accadrebbe nella vota reale, diciamo…), per ovvi motivi, dato che il re può spostarsi solo di una casella mentre il cavallo ha un movimento a L più ampio. Ma quanto più velocemente, esattamente, si muove il cavallo? Lo ha calcolato Christian Táfula Santos, dottorando presso il Dipartimento di Matematica dell’Università di Montréal (UdeM), e la sua dimostrazione è stata pubblicata sul server di preprint arXiv.

Il concetto di numero è elaborato in aree cerebrali molto antiche. La concettualizzazione numerica potrebbe avere le sue radici in un’area finora non associata a pensieri matematici

Per La Lente Matematica di Marco Menale:

Calciomercato matematico. È cominciato il calciomercato di riparazione che è sempre più basato su matematica, statistiche e dati. Il modello MLR confronta le performance e le statistiche di due (o più) giocatori assegnando poi un valore a ciascuno sulla base di opportuni pesi. In questo modo, le scelte delle società trovano un supporto quantitativo in numeri e modelli.

Crescita e risorse: la funzione di Monod. Come varia il tasso di crescita di una popolazione batterica quando le risorse sono limitate? L’equazione di Monod modella questo fenomeno. Trova applicazioni in diversi contesti, come i bioreattori.
Il modello di Holling per la predazione. Il modello Lotka-Volterra descrive l’evoluzione di un sistema di prede e predatori. Ma quante prede riescono davvero a consumare i predatori? Risponde Holling. La risposta funzionale di Holling descrive il tasso di consumo di prede da parte dei predatori. Ce ne sono tre diversi tipi a secondo delle specie in gioco.

Per Letture Matematiche:
A Cambridge con Newton: un racconto affascinante tra scienza e storia. Perché le mele cadono a terra? A che cosa sono dovute le maree? Quale fenomeno genera gli arcobaleni? Nel libro “A Cambridge con Newton – Andrea scopre la gravità” di Silvia Merialdo, che fa parte della collana ScienzaInViaggio pubblicata delle Edizioni Dedalo, i giovani lettori troveranno risposta a queste e altre domande grazie alle spiegazioni di Newton in persona. Lo ha letto per noi Monica Mattei.


Anche Gianluigi Filippelli scrive molto.

Iniziamo con Matematica in vacanza #3 che raccoglie tutti i post matematici usciti tra metà novembre e metà dicembre 2024.

Passiamo alle recensioni, che come nei mesi precedenti è fagocitata dalla collana Matematica:
* Problemi inversi di Maria Lazzaretti
* La matematica della cybersecurity di Alessandro Mazzoccoli
* Matematica sperimentale di Pierluigi Vellucci
* Algoritmi e immagini di Maria Lazzaretti

Nella serie dei Rompicapi di Alice ecco Il problema del commerciante, un rompicapo geometrico popolarizzato da Henry Dudeney nel 1902.

Tra i Paralipomeni ecco Dissezionare e ricomporre quadrati, la mia proposta di soluzione per il gioco matematico con cui si conclude il 45.mo volume della collana Matematica.

Per Le grandi domande della vita, Il mahjong e la combinatoria in cui a partire da alcune domande sul mahjong presenti in un romanzo di Andrea Vismara andiamo a scoprire il legame tra questo gioco cinese e la combinatoria.

Infine, visto che il periodo che ha preceduto questa prima edizione del 2025 era di festa, c’è anche un post natalizio: Il problema di Babbo Natale, sul problema della consegna del regalo migliore a ciascun bambino.


Poi ci sono io. Anch’io ho un ricordo di Adam Atkinson, che è comunque parte della matematica. Tutto il resto:

Per i quizzini della domenica, abbiamo (Semi)cerchi e triangoli, semplice problema geometrico classico, seguito da un “non quizzino” per vedere se siete attenti con le regole aritmetiche; Finestra gotica, ancora un problema geometrico classico; Etichetta, geometria molto semplice; Teiere, dove le dimensioni non contano; Bandiera, semplicemente geometrico; Potenze, per divertirsi coi logaritmi; Fette di pentagono, conti geometrici piuttosto semplici; Raddoppia i triangoli, geometrico quanto basta, ma che richiede di pensare un po’ out of the box; Monty Hall con la sorpresa, che credo abbia generato reazioni simili a quello originale.

Per le recensioni dei libri della collana Matematica, i volumi sono: 41, Simulazione e statistica di Alessandro Viani. Impareremo a scegliere un buon campione, casuale ma non troppo. – 42, Matematica e computer dell’infaticabile Paolo Caressa. L’informatica di base vista da un punto di vista matematico (che è davvero diverso!) – 43, Crittografia ed entropia di Giovanni Chesi e Leonardo Vaglini. L’altra faccia della teoria dell’informazione. – 44, Problemi inversi di Marta Lazzaretti: come trovare la domanda migliore che dà la risposta che abbiamo. – 45, La matematica della cybersecurity di Alessandro Mazzoccoli. A volte è meglio rischiare e non assicurarsi contro i cibercrimini! – 46, Matematica sperimentale di Pierluigi Vellucci. Attenzione, contiene la congettura di Collatz. – 47, Matematica e immagini di Marta Lazzaretti: una spiegazione di come funzionano i parametri per migliorare le nostre immagini. – 48, Teoria delle categorie di Marco Erba e Claudio Sutrini: matematica astrattissima fatta con i disegnini.

Per le recensioni matematiche generiche: Mathematical Lateral Thinking Puzzles, di Paul Sloane e Des MacHale. Diciamo che parecchi degli enigmi non sono poi cosi laterali. – Lateral Solutions to Mathematical Problems di Des MacHale. Anche qui secondo me matematica ce n’è, ma pensiero laterale non sempre. – Parole, formule, emozioni, di Paolo Maroscia et al. I brevi saggi nel volume che parlano di relazioni tra matematica e letteratura sono molto disuguali. – Dove va la fisica, di Matteo Serra. Uno sguardo a 360 gradi sulla fisica oggi. – Trick, Games and puzzles with Matches di Maxey Brooke: diciamo che la matematica ricreativa è migliorata nei decenni.

Per il mercoledì matematico parlo dei numeri autobiografici, con una curiosa aggiunta; di una generalizzazione delle terne pitagoriche, i mattoni di Eulero; di come si può simulare un dado a 9 facce; del fatto che forse è stato dimostrato il teorema del divano; del fratello minore del rapporto aureo: il rapporto argenteo; di un gioco di prestigio (matematico) dei tempi di Shakespeare.

Per il resto, racconto di un allarme sugli utensili di plastica neri perché si è sbagliata una moltiplicazione; che i sistemi LLM stanno migliorando i loro punteggi matematici, ma a un costo probabilmente eccessivo; mostro un numero primo bene ordinato.


Appuntamento a febbraio con i Rudi Mathematici!

Un gioco di prestigio (quasi) scespiriano

Philip Henslowe era il fondatore e impresario del Rose Theater a Londra, negli anni in cui Shakespeare rappresentava le sue opere. Ci è pervenuto un suo diario manoscritto, dove in genere parla degli affari del teatro, ma ogni tanto ci sono delle chicche, come la spiegazione di un gioco di prestigio con le carte. Qui sotto potete vedere la trascrizione fatta nell’800 da un certo W.W. Greg.

Il testo di Henslowe, trascritto da W. W. Greg nell'800

Il testo è stato scoperto da Rob Eastaway mentre stava cercando materiale per il suo libro Much Ado About Numbers, che parla di Shakespeare e matematica. Peccato che il gioco di prestigio non funzionasse… probabilmente perché c’è stato qualche errore di trascrizione o di comprensione dell’inglese dopo tre secoli. Il gioco, secondo la trascrizione, funziona così:

Disponete 12 carte a faccia in giù in cerchio (ordinate dall’asso alla donna in senso orario), e in basso aggiungete il fante di picche, con la faccia in alto. [Nella figura è un K perché è un knave, un fante] Prendete un volontario, chiedetegli di considerare – senza dirlo – l’ora alla quale si è svegliato (tra 1 e 12: ma si può dire al volontario di scegliere un numero qualunque), scegliere una carta qualunque tra le 12 coperte sempre senza far vedere qual è, e contare dalla successiva in senso orario fino a 15, il tutto senza che noi guardiamo. A questo punto il volontario deve ricordarsi su quale carta è finito: noi ora partiamo dal fante di picche e contiamo in senso orario da 15 fino a 26. Il volontario deve notare qual è il numero che abbiamo detto mentre indicavamo la carta dove era finito, e contare questa volta in senso antiorario dal numero segreto fino a questo numero. Voltando la carta dove è arrivato con questo secondo conteggio, dovrebbe esserci proprio la carta corrispondente al numero pensato.

Colin Beveridge ha provato a eseguire il gioco, ha visto che non funzionava, e l’ha studiato per capire dov’era l’errore, riuscendoci e postando su Aperiodical i conti che ha fatto. La cosa non è stata molto complicata, perché si sbagliava sempre di un’unità (se uno partiva dal 7 finiva al 6); basta insomma che noi contiamo (e poi partiamo) da 14 e non da 15 e il gioco funziona. Ma come mai funziona? Semplice: stiamo lavorando con l’aritmetica modulare. Se il volontario ha scelto il numero n e parte dalla carta #c, contando fino a 14 dalla carta successiva arriva a #(c + 14 − n), naturalmente modulo 13. Partendo dal 14, noi in realtà stiamo dicendo il numero della carta coperta, sempre modulo 13, e quindi quando arriviamo sulla carta dove si era fermato il volontario siamo arrivati al numero (c + 27 − n). Quando conta all’indietro dalla carta #(i>c + 14 − n), partendo da n e arrivando a c + 27 − n, quello che succede in pratica è che si arriva alla carta in posizione (i>c + 14 − n) − (c + 27 − 2n) che è la carta #(n − 13), che modulo 13 è proprio la carta #n.

Come ha astutamente notato il figlio decenne di Beveridge, il 15 originale per il conteggio del volontario può essere un qualunque numero, perché tanto viene eliminato nel conteggio all’indietro; per quello che a differenza sua io ho preferito contare solo fino a 14 per mantenere la simmetria tra i due numeri. Il trucco è molto semplice se uno conosce un po’ di aritmetica modulare, ma ho il sospetto che nel ‘600 la cosa non fosse così comune… e anche adesso lo si può sfruttare, visto che presenta il vantaggio che può essere ripetuto più volte con valori diversi senza che il pubblico si accorga del trucco… a meno ovviamente che non ci sia un matematico!

Buon 2025 matematico!

Il 2025 è un anno il cui valore ha molte proprietà matematiche, come racconta Greg Ross:

  • È un quadrato (45²).
  • È il prodotto di due quadrati (9² × 5²).
  • È la somma dei cubi dei primi nove numeri naturali (1³ + 2³ + 3³ + 4³ + 5³ + 6³ + 7³ + 8³ + 9³ = 2025), e pertanto il quadrato della loro somma (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)² = 2025.
  • È il termine centrale di una progressione aritmetica di quadrati (81, 2025, 3969).
  • È il più piccolo numero con esattamente 15 fattori dispari (1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 135, 225, 405, 675, 2025).
  • È la somma dei numeri in una tavola pitagorica 9×9.

Nel 2025 avremo inoltre un “giorno pitagorico”: il 24/7/25, perché 24² + 7² = 25².

Se volete giocare un po’ con il numero 2025, ecco alcuni problemi, gli ultimi due tratti da Mathy Jokes for Mathy Folks.

  1. La nazione di Tesséra ha come moneta il quad. Ma la cosa davvero interessante è che tutte le banconote hanno come valore un numero che è un quadrato perfetto: quindi ci sono banconote da 1, 4, 9, 16, … fino a 50² = 2500 quad. Se devo pagare 2025 quad ma non ho la banconota corrispondente, posso ovviamente usare 2025 banconote da 1 quad; ma non ne servono così tante. Per esempio, ne posso usare solo quattro: una da 1936 quad, una da 81 quad e due da 4 quad. È possibile pagare 2025 quad con solo tre banconote? E con due?
  2. Se dividiamo tipograficamente a metà il 2025, ottenendo dunque 20 25, sommiamo i due numeri e li eleviamo al quadrato otteniamo di nuovo 2025: (20 + 25)² = 2025. Quali sono gli altri due numeri di quattro cifre con la stessa proprietà?
  3. Ho con me 2025 cubetti unitari. Qual è la minima superficie di una scatola che li contenga tutti esattamente?
  4. Un numero naturale n si dice disponibile se è possibile trovare un insieme di n numeri interi non necessariamente distinti tali che la somma e il prodotto di numeri dell’insieme è uguale al numero di partenza. Per esempio, {−1, −1, 1, 1, 1, 1, 2, 4} ha somma e prodotto 8, quindi 8 è disponibile. Secondo voi, 2025 è disponibile o no?
  5. Usando una sola volta le quattro cifre 2,0,2,5 scrivete un’espressione che valga 2025. Sono accettate le quattro operazioni, l’elevamento a potenza, la radice quadrata, fattoriali “!”, semifattoriali “!!”, concatenazione di al massimo due cifre (altrimenti avreste già 2025…), il punto decimale. Io non ho trovato una soluzione che lasci le cifre in ordine, voi magari ci riuscite…

Infine, siete in grado di emulare Inder Taneja e ottenere 2025 usando al più nove copie di una singola cifra da 1 a 9, con le quattro operazioni, l’elevazione a potenza e parentesi a piacere? Lo si può fare con tutte e nove le cifre.

Aggiornamento: (7 gennaio) Ecco la dimostrazione per induzione che la somma dei cubi da 1 a $n$ (che abbrevio in $C_n$) è uguale al quadrato della somma dei numeri da 1 a $n$: il tutto per induzione. Il caso $n = 1$ è immediato; se l’uguaglianza vale per $n$ abbiamo nel caso $n+1$

$(1 + 2 + \cdots + n + (n+1))^2 = ((1 + 2 + \cdots + n) + (n+1))^2 = (1 + 2 + \cdots + n)^2 + (n+1)^2 + 2(1 + 2 + \cdots + n)(n+1) = C_n + (n^2 + 2n + 1) + 2n((n+1)/2)(n+1) = C_n + n^2 + 2n + 1 + n^3 + 2n^2 + n = C_n + n^3 + 3n^2 + 3n + 1 = C_n + (n+1)^3 = C_{n+1}.$

Ultimo aggiornamento: 2025-01-07 11:20

AI e matematica: ci sono miglioramenti?

Alex Wilkins in questo articolo racconta dei progressi ottenuti nel 2024 dalle intelligenze artificiali nel campo della risoluzione di problemi matematici.
Come sapete, gli LLM non “comprendono” quello che hanno in input (o in output, se per questo) ma scelgono fondamentalmente la frase più probabile data la successione di parole in ingresso e le variabili nascoste che hanno a disposizione. Quindi se chiediamo a ChatGPT e ai suoi amici quanto fa 2 + 2 è estremamente probabile che la risposta sia 4; ma alla domanda “Add 34957 to 70764” rischiamo che la risposta sia 105621. (Non ho fatto la prova, ma immagino che chi sviluppa gli LLM abbia tenuto conto di questa particolare addizione e quindi ci sia del codice che faccia dare la risposta corretta.) Il guaio è che proprio perché gli LLM non capiscono quello che fanno è difficile per loro anche solo accorgersi che il problema è matematico e passarlo a un modulo “classico” che faccia i conti.

Pare però che quest’anno ci sia stato un miglioramento nelle performance di questi sistemi, partendo da Google Deepmind che sarebbe riuscita a prendere una medaglia d’argento alle olimpiadi della matematica – no, non vuol dire arrivare secondi, ma essere tra il 20% dei migliori – e arrivando al prossimo sistema O3 di OpenAI che avrebbe ottenuto il 75,7% di risposte corrette sul test “semiprivato” della ARC Challenge, studiato appunto per avere problemi facili per gli umani ma difficili per l’AI. Peccato che il costo per rispondere a ciascuna domanda è intorno ai 20$; O3 avrebbe anche raggiunto l’87,5%, sopra la soglia dell’85% che permetterebbe di vincere l’ARC Challenge, se non fosse per un piccolo particolare. Il costo per rispondere meglio alle domande è di 172 volte maggiore: in pratica per rispondere a una singola domanda O3 consuma 3500 euro di energia… e comunque le soluzioni in questo caso arrivavano per forza bruta, il che spiega il costo.

Diciamo insomma che questi sistemi ne hanno ancora da fare di strada…

Il rapporto argenteo

il rapporto argenteoInnanzitutto buon Natale, così non me lo dimentico :-)

Conoscete tutti il rapporto aureo, il numero che divide un segmento in due parti che hanno rapporto uguale a quello tra il segmento stesso e la parte maggiore: $\frac{a+b}{a} = \frac{a}{b} = \varphi$; o se preferite la soluzione positiva dell’equazione $x^2 = x + 1$. È molto meno noto il suo fratello, il rapporto argenteo (o numero argenteo) σ. Esso si definisce in modo simile: è il numero dato dall’uguaglianza $\frac{2a+b}{a} = \frac{a}{b} = \sigma$, o se preferite la soluzione positiva dell’equazione $x^2 = 2x + 1$.

Facendo i conti, il rapporto argenteo vale $1 + \sqrt{2}$, cioè circa 2,41421 o se preferite circa 70/29. In figura in alto vedete un rettangolo argenteo che contiene un altro rettangolo argenteo ottenuto togliendo i due quadrati verdi; da qui togliendo i due quadrati rossi si ottiene un terzo rettangolo argenteo.

il rapporto argenteo nell'ottagono regolare Il rapporto argenteo non è carino come quello aureo, ma ha comunque alcune interessanti proprietà. Se per esempio consideriamo l’iterazione $x \gets \tfrac12 (x^2+1) /(x-1)$ per $x_0 \in [2,3]$, abbiamo che σ è un punto fisso superstabile: cioè la derivata della funzione in quel punto è nulla, il che significa che la convergenza è estremamente rapida. Inoltre, lo sviluppo in frazione continua del numero argenteo è σ = [2; 2, 2, 2, 2, …] (confrontatela con quella del numero aureo ϕ = [1; 1, 1, 1, 1, …]), con 1/σ = [0; 2, 2, 2, 2, …]; il rapporto argenteo è un numero di Pisot (il secondo, dopo il rapporto aureo), il che significa che le sue potenze sono ottime approssimazioni di numeri interi.

Dall’iterazione $x \gets \sqrt{1 +2x \vphantom{/} }$ otteniamo poi il radicale innestato σ = $\sqrt{1 +2\sqrt{1 +2\sqrt{1 +\cdots}}} \;.$ Troviamo un rettangolo argenteo anche all’interno di un ottagono regolare, come mostrato in figura. Altre proprietà del numero argenteo: $1 =\frac{1}{\sigma -1} + \frac{1}{\sigma +1}$, $\sigma =\frac{\sigma +1}{\sigma -1}$, $ \sigma =2\sum_{n=0}^{\infty} \sigma^{-2n}$.

Un’ultima curiosità: nella figura qui sotto vediamo come dei rettangoli di rapporto tra i lati σ−1 (blu e verde), σ/(σ−1) (rosso e marrone) e σ (viola, giallo) tassellano un quadrato.

(Immagine dei rettangoli non proprio argentei di Zilverspreeuw, da Wikimedia Commons)

Ultimo aggiornamento: 2024-12-25 20:22

Utensili di plastica e allarmi per un errore aritmetico

utensili di plastica Avete presenti gli utensili di plastica neri? Un articolo pubblicato lo scorso ottobre sulla rivista Chemosphere ha sollevato pesanti dubbi sulla loro tossicità, e la notizia è balzata subito sulle prime pagine dei media americani. Da noi non ho visto nulla, ma non significa molto. Abbiamo avuto titoli come “Quegli utensili di cucina così carino potrebbero stare per avvelenarvi, dice uno studio. Ecco che dovete fare”, dal L.A. Times. Molti americani hanno buttato via i loro utensili.
Lo studio spiegava che quella plastica è riciclata a partire da rifiuti elettronici che arrivano soprattutto dalla Cina (paradossalmente, non si riesce a riciclare automaticamente la plastica nera perché le macchine che distinguono i vari tipi di plastica funzionano a infrarossi, e la plastica nera li assorbe), che provengono da apparecchiature trattate con ritardanti del fuoco.
Lo studio stima che usare utensili contaminati può causare un’assunzione media di 34700 nanogrammi al giorno di etere di decabromodifenile, noto come BDE-209. La dose di riferimento stabilita dalla agenzia per la protezione dell’ambiente americana è di 7000 nanogrammi per chilogrammo di peso per giorno. Un adulto di 60 kg non dovrebbe pertanto assumere più di 42000 nanogrammi al giorno, e solo con quegli utensili ci si arriva quasi.

Avete capito qual è il piccolo problema? Come scritto dal National Post, è un banale errore matematico. Se moltiplichiamo 7000 per 60 otteniamo 420000, non 42000. Quindi l’assunzione è sotto il 10% della dose di riferimento: qualcosa a cui fare attenzione, ma non così pericoloso come sembrava.
Eppure l’autore principale dell’articolo, che alla fine ha dovuto preparare una rettifica, continua a dire “è importante notare che [questo errore] non impatta i nostri risultati.” Se lo dice lui…

La parte più propriamente matematica è però quella finale dell’articolo, dove Joe Schwarcz, direttore del McGill University’s Office for Science and Society, fa una considerazione molto banale: perché mai bisognava indicare la dose di riferimento in nanogrammi? I numeri che escono sono molto grandi e poco riconoscibili. Se la dose di riferimento fosse stata indicata in [EDIT] 7 microgrammi per chilo di massa al giorno e quella trovata negli utensili a 34,7 microgrammi al giorno, ci si sarebbe subito accorti dell’errore…

(immagine presa da SVG Silh)

Ultimo aggiornamento: 2024-12-18 18:06