È abbastanza noto che tra i problemi dei chatbot c’è una certa piaggeria nei confronti degli utenti: essi sono infatti programmati per darti sempre ragione, e non si peritano di dare una risposta tirata a caso quando nel loro materiale di addestramento non c’è nulla al riguardo. Quando gli fai notare che quello che ha scritto non è vero non fa una piega, e si limita a cominciare a dire “hai proprio ragione!” Insomma, un approccio che forse migliora l’autostima di chi fa le domande ma può dare molti problemi nel medio termine.
Quello che non sapevo è che il concetto di “no” non funziona nemmeno nei prompt, almeno nel passato recente. Questo articolo di New Scientist dello scorso maggio spiega infatti come un test in cui si è cercato di addestrare dei modelli mostrando loro radiografie di soggetti con e senza polmonite, etichettate rispettivamente con “signs of pneumonia” e “no signs of pneumonia”, ha prestazioni molto inferiori a quelle di un modello addestrato solo “in positivo”. Lo stesso capita in un altro test, dove chiedere quale foto ha “un tavolo senza una sedia” fa calare la percentuale di risposte esatte di 15 punti rispetto al trovare un tavolo e una sedia.
Quello che pare capitare è che i modelli sono bravi a riconoscere nel prompt una parola chiave, ma hanno difficoltà ad associarla a un concetto negativo. Non è credo un caso che generalmente i modelli abbiano due insiemi diversi di prompt, quello positivo e quello negativo; in questo modo il controllo è più semplice. Il guaio è naturalmente che questo cozza contro la necessità di interagire in linguaggio naturale: sembra insomma incredibile, ma la prima parola che un bambino impara (che come tutti i genitori sanno bene non è né mamma né papà, ma “no!”) sia al di fuori delle capacità di un chatbot…
Ultimo aggiornamento: 2025-11-24 12:31