Prendiamo un foglio a quadretti, e consideriamo i vertici dei quadretti (i punti di un lattice a coordinate intere, per dirlo in maniera più seria: nel seguito parlerò di punti a coordinate intere o punti del lattice.) Disegniamo ora sul foglio un cerchio. Secondo voi, il teorema “dato un numero $n$, è sempre possibile costruire un cerchio che contiene al suo interno esattamente $n$ punti a coordinate intere” è vero o falso? (Possiamo accettare o no i punti a coordinate intere sulla circonferenza, tanto è sempre possibile allargare il raggio di un $\varepsilon$ abbastanza piccolo da non toccare nessun altro punto a coordinate intere). In questo caso la dimostrazione è relativamente semplice: se troviamo un punto del piano che abbia distanza diversa da tutti i punti del lattice, possiamo costruire un cerchio di centro quel punto, e al crescere del raggio il numero di punti ivi contenuti crescerà di una singola unità per volta. Un punto simile è $P = (\sqrt 2, \frac{1}{3})$.
Come dimostrarlo? Supponiamo per assurdo che i punti distinti del lattice di coordinate $(a,b)$ e $(c,d)$ siano alla stessa distanza da $P$. Abbiamo allora per definizione
$(a-\sqrt 2)^2 + (b-\frac{1}{3})^2 = (c-\sqrt 2)^2 + (d-\frac{1}{3})^2$
Separando la parte irrazionale da quella razionale otteniamo
$2(c-a)\sqrt 2 = c^2 + d^2 – a^2 – b^2 + \frac{2}{3}(b-d)$
Poiché il secondo membro è un numero razionale, anche il primo deve esserlo; pertanto devono essere entrambi uguali a zero. Abbiamo così
$c=a; c^2 + d^2 – a^2 – b^2 + \frac{2}{3}(b-d) = 0.$
Sostituendo la prima uguaglianza nella seconda, abbiamo $d^2 – b^2 + \frac{2}{3}(b-d) = 0$, cioè
$(d-b)(d+b-\frac{2}{3}) = 0.$
Ma $b$ e $d$ sono interi, quindi il secondo fattore non può essere nullo; pertanto $d=b$. Ma allora i due punti $(a,b)$ e $(c,d)$ coincidono, il che va contro la nostra ipotesi. Pare che Hugo Steinhaus sia anche riuscito a dimostrare che è possibile trovare un cerchio di area $n$ che contiene esattamente $n$ punti a coordinate intere, ma non sono riuscito a trovare traccia di questa dimostrazione.
Passiamo ora a un problema più complicato, considerando non il cerchio ma solo la circonferenza appena costruita. È possibile che questa circonferenza non passi per nessuno dei vertici dei quadretti (i punti di un lattice a coordinate intere, per dirlo in maniera più seria). Ma a volte capita che alcuni dei punti della circonferenza abbiano coordinate intere. Per esempio, la circonferenza $x^2 + y^2 = 25$, cioè di centro l’origine e raggio 5, passa per i punti $(-5,0), (5,0), (0,-5), (0,5), (-3,-4), (-3,4), (3,-4), (3,4)$. La domanda che ora possiamo farci è “ma dato un numero $n$, riusciamo a costruire una circonferenza che passi per esattamente $n$ punti di coordinate intere?”
Se $n=1$ trovare una circonferenza simile è semplice: si prende una circonferenza di centro $(0,\frac{1}{4})$ e raggio \frac{1}{4}. Se $n=2$ è altrettanto semplice: si prende una circonferenza di centro $(0,\frac{1}{2})$ e raggio \frac{1}{2}. In figura vedete una possibile soluzione per il caso $n=4$. Ma provate a risolvere il caso $n=3$… Una dimostrazione del teorema si è avuta solo nel 1958, a opera del matematico polacco Andrzej Schinzel, e ha il pregio di essere costruttiva: se $n$ è pari e quindi $n = 2k$ allora la circonferenza cercata ha centro $(\frac{1}{2}, 0)$ e raggio $\frac{1}{2} \cdot 5^{(k-1)/2}$, mentre se $n$ è dispari e quindi $n = 2k+1$ la circonferenza ha centro $(\frac{1}{3}, 0)$ e raggio $\frac{1}{2} \cdot 5^k$.
Non scrivo la dimostrazione, che è piuttosto lunga (e la pagina di Wikipedia è troppo stringata per capirci qualcosa, tra l’altro): posso però dire che si basa su un teorema di teoria dei numeri, che non dimostrerò, che afferma che il numero $r(n)$ di soluzioni intere $(x,y)$ dell’equazione $x^2 + y^2 = n$ è quattro volte la differenza tra il numero di divisori di $n$ della forma $4h+1$ e quelli della forma $4h+3$: il numero in realtà è da dividere per due perché si contano sia $(x,y)$ che $(y,x)$.