Termino la “trilogia delle uguaglianze”, iniziata con la dimostrazione che 0,999999… è uguale a 1 e continuata con la dimostrazione che magari i due numeri non sono proprio uguali, con un terzo esempio. Chi salta a piè pari la mia roba matematica stavolta può fare uno sforzo e andare avanti: garantisco che di conti e formule stavolta non ce ne sono.
Sono certo che per la maggior parte di voi chiedersi se 1,00 è uguale a 1 è quasi un’eresia. Già alle elementari ci è stato spiegato che gli zeri a destra dopo la virgola sono asolutamente inutili se non sono seguiti da un’altra cifra, e quindi si possono togliere senza problemi. Tranquilli: vi assicuro che un matematico vi dà perfettamente ragione, e non credo proprio esistano teorie che prevedano che 1,00 abbia un valore diverso da 1. In fin dei conti, qui non ci sono paradossi con l’infinito, e quindi le operazioni funzionano regolarmente come siamo abituati, senza nulla di preoccupante. Ma il mondo non è fatto solo da matematici!
Iniziamo con i fisici, gli acerrimi nemici dei matematici. Per loro dire 1 oppure 1,00 sono due cose ben diverse: il tutto ha origine dal fatto che loro non pensano ai numeri come entità pure, ma come il risultato di una misura. Quando un matematico parla di pi greco, per lui quello è un numero ben preciso: potrà magari approssimarlo se mai gli toccherà di dover ricavare un numero da un’espressione algebrica, ma il numero resta appunto un numero. Quando un fisico dice che la luce nel vuoto viaggia a 300000 Km/sec, quel dato non è un numero ma una misura, che è inevitabilmente un’approssimazione: il fisico ovviamente lo sa, e non si preoccupa più di tanto… a meno che sia uno che cerchi di rendere la misura ancora più precisa. Al momento, ad esempio, si afferma che la luce nel vuoto percorre 299792,458 Km/sec; ma nella migliore delle ipotesi possiamo dire che sono più di 299792,457 e meno di 299792,459 Km/sec, e nessuno pensa che in un secondo la luce percorra un numero esatto di metri.
Il modo più completo per indicare quanto ci si possa fidare di una misura è infatti quello di aggiungere al valore della misura l’errore (statistico) che ci si aspetta aver fatto: si può ad esempio affermare che una costante di natura valga 2,573 più o meno 0,0022. Ma c’è un secondo modo, che consiste nell’indicare solo il numero di cifre di cui si è certi. Nel caso fittizio qui sopra, si scrive 2,57 e si suppone che il lettore sappia non solo che non è un valore perfetto ma approssimate, come 3,14 per pi greco; ma anche che si è certi di quelle tre cifre ma non delle successive. In questo caso, scrivere 1,00 è molto diverso che scrivere 1. Infatti nel primo caso possiamo immaginare il valore compreso tra 0,995 e 1,005, mentre nel secondo lo dobbiamo immaginare tra 0,5 e 1,5. È un po’ come dire “proprio lì” invece che “da quelle parti”: si indica sempre lo stesso punto, ma si intendono cose ben diverse.
Per chi non è ancora convinto della cosa – e sono sicuro che parecchi dei miei lettori sono tra questi – faccio ancora un esempio. Se dico che il giocatore di basket X è alto due metri, voi siete convinti che è alto esattamente come il giocatore Y, indicato nell’annuario come alto 2,00 metri? Probabilmente no, penserete solo che è più o meno della stessa altezza; ma se avessi detto che è “due metri e zero zero” allora sì che X e Y sono alti uguali.
Ma c’è ancora un’altra scienza in cui l’eguaglianza può non valere, ed è l’informatica. In effetti, 1,00 è con ogni probabilità uguale a 1, ma ad esempio 0,100 non è esattamente 1/10; ma nemmeno 0,1 lo è. Il motivo qui è diverso, e dipende dalla rappresentazione dei numeri all’interno di un calcolatore. Lo spazio per conservare il valore di un numero è limitato: quattro, otto o al limite 16 byte, se non si usano codifiche speciali. Per i numeri interi non troppo grandi, tali codifiche vanno più che bene; ma per i numeri “reali” bisogna usare un’approssimazione. La fregatura è che i calcolatori operano in base 2, e quindi i numeri “tondi” per noi non lo sono affatto per un PC. Per esempio, 0,1 in base 2 si scrive 0,0(0011), dove la parte tra parentesi si ripete all’infinito; quindi il numero memorizzato sarà leggermente diverso.
Noi non ce ne accorgiamo, perché quello che viene mostrato è un numero arrotondato proprio per evitare di trovarci con una sfilza di cifre nella maggior parte dei casi inutili, ma è così… a meno che non si applichi la notazione a virgola fissa, che però usa degli interi e li divide per un’opportuna potenza di dieci quando li mostra. Un software che deve fare i conti in euro probabilmente usa una virgola fissa in seconda posizione, il che significa che i conti li fa in centesimi. Tanto i numeri grandi non lo spaventano mica!
La morale di tutto questo? La teoria è una bella cosa, ma la pratica non sempre è d’accordo con essa. Quando si parla di un numero, bisogna sempre capire a cosa si riferisce esattamente, prima di snocciolare le sue proprietà!
Aggiornamento: (17:25) come fattomi notare nei commenti, la velocità della luce nel vuoto è esattamente 299792458 metri al secondo, per l’ottima ragione che il metro è definito proprio per mezzo della velocità della luce nel vuoto. Prendete allora come esempio il peso di un protone in termini di masse atomiche. In genere viene considerato pari a 1; il valore più accurato a oggi è 1,007 276 466 88, ma non è che quello sia il valore esatto!
Ultimo aggiornamento: 2008-09-01 10:31
Naturalmente per un’ingegnere è cosa ovvia… Giusto per completare il discorso informatica, non è vero quanto dici se si usasse la codifica BCD (esistono dei casi pratici, per esempio alcune calcolratrici tascabili).
Ciao
I fisici sono gli acerrimi nemici dei matematici? Buffo, in tanti anni di fisica ho sempre pensato che i nostri acerrimi nemici fossero i filosofi. Al massimo i matematici li vediamo come “un po’ eccentrici” ma non sentiamo acrimonia ;-)
In rappresentanza degli “acerrimi nemici”, non sai che soddisfazione coglierti in fallo!
1. Non si scrive Km/sec, ma km/s: le convenzioni hanno sempre ragione.
2. Hai fatto l’esempio sbagliato: la luce viaggia esattamente alla velocità di 299792458 m/s, ed è l’unico valore che un fisico accetta come esatto. Infatti, per definizione il metro è la distanza percorsa dalla luce in 1/299792458 secondi: ciò significa che se misurando trovo un valore diverso, il mio metro non è lungo un metro!
Però il post mi piace lo stesso; e grazie per aver dato voce all’altra campana.
@galliolus: sulla velocità della luce ammetto senza problemi il mio errore: non mi era venuto in mente che dopo avere stabilito la durata del secondo con le vibrazioni dell’atomo di cesio fossero passati al metro attraverso la velocità della luce. Sulle prime avrei voluto usare la costante di struttura fine, ma mi sembrava troppo complicato. Passerò alla massa del protone :-)
Però per quanto riguarda i Kg/sec, la mia è stata una scelta voluta: molti dei miei ventun lettori non si ricordano assolutamente le unità di base del SI, e se vedono scritto Km/sec capiscono più velocemente di che si tratta.
@mau: i kg/sec però si usano solo per misurare le sagre della porchetta :)
Io in compenso devo stare attento tutte le volte che scrivo “consiglio comunale” perché regolarmente mi salta fuori “coniglio” :)
Post molto interessante ovviamente: io sto dalla parte dei fisici, anche perché avrei fatto volentieri anche fisica anziché storia (ma va bene così), se non fosse stato che analisi 1 era tutto quello che non avevo capito in 5 anni di liceo :)
ciao .mau.
torni alla grande!
gran bel post :-)
Mi sa che il tuo valore della massa relativa del protone non è aggiornato. Il valore raccomandato attuale (del 2006) è pari a 1,007 276 466 77(10) u. Il valore che citi tu penso sia quello del 2002, che aveva un’incertezza pari a 0,000 000 000 13 u, se non erro.
Fonte
@Oziosa: ho preso quello di it.wiki (sì, aveva quell’incertezza lì), tanto dal mio punto di vista cambiava poco.
Ok, lo so. Sono fuori tempo massimo. Però volevo far notare a galliolus come il sistema internazionale (SI) prescriva la “K” maiuscola per indicare le migliaia (Km, Kg, KA, KW, KF ecc ecc). Quindi, volendo essere pignoli, Km/s e non km/s ;-)