Due tra cinque monete apparententemente identiche sono false. Le due monete false hanno lo stesso peso, che è diverso da quello delle monete genuine. Avendo a disposizione una bilancia a due piatti che indica la differenza di peso tra i due piatti (e non quindi solo quale dei due piatti ha un peso maggiore), qual è il numero minore di pesate necessario per riuscire a trovare almeno una moneta genuina?
Problema tratto da Mathematics StackExchange; figura di dear_theophilus, da OpenClipArt.