Nel disegno sotto, possiamo immaginare che il primo diametro AB sia fissato; possiamo fare variare il secondo, per ragioni di simmetria, con un angolo α che va da 0 a 90 gradi e che tocca la semicirconferenza in un punto X. Il terzo diametro può variare su tutta la semicirconferenza AIB (OI è perpendicolare ad AB), incrociandola in un punto Y (non disegnato). Se Y sta tra A e X, l'angolo XOB è ottuso e quindi c'è una fetta più grande di un quarto di pizza. Se sta tra X e I, l'angolo YOB è ottuso. Infine, considerato il punto X' con OX' perpendicolare a OX, se Y sta tra X' e B l'angolo XOY è ottuso. L'unico caso in cui non ci siano angoli ottusi è quindi se Y sta tra I e X'.
Poiché l'angolo IOX' è uguale a AOX, possiamo considerare quest'ultimo. Al variare di α, la probabilità che Y sta tra A e X cresce linearmente da 0 a 1/2 (agli estremi c'è discontinuità, ma non ci dà fastidio); quindi la probabilità media è 1/4. Questo implica che la probabilità che ci siano due fette maggiori di un quarto della pizza è il complementare, vale a dire 3/4.
In genere sono i fisici che usano ragioni di simmetria, ma anche i matematici a volte possono indulgere.