Si prendano ventun pedine, alcune bianche e altre nere, e le si dispongano in una scacchiera 3×7, una per casella. Si dimostri che ci sarà sempre un rettangolo (non banale, quindi non 1×k) ai cui vertici ci siano pedine dello stesso colore. Il rettangolo è con i lati paralleli alle caselle, per completezza.
Problema tratto dalla Olimpiada Matemática Española (anno 1994).