Quadrati e cifre

Esistono numeri quadrati che terminano con un numero a piacere di zeri: per esempio, 1002=10000 e 10002=1000000: non consideriamoli perché sennò non ci si diverte. Esistono però anche numeri quadrati che terminano con un certo numero di cifre consecutive (diverse da zero) uguali: per esempio 122=144 termina con due 4. Esiste un numero massimo di cifre consecutive finali possibili. Qual è questo numero, e qual è il più piccolo quadrato con questo numero di cifre consecutive finali possibili? Per esempio, il numero potrebbe essere 5, e il quadrato più piccolo con cinque cifre consecutive finali essere 314155555; peccato che quel numero non sia un quadrato.

[...55555]

[aiutino?]     [risposta]

[continua]    [indice]

Problema tratto da Henry Dudeney, 536 Puzzles and Curious Problems (n. 104).