Non so se a voi sia mai capitata la stessa cosa, ma il pensiero che se costruiamo un triangolo di lati 3, 4 e 5 unità tale triangolo è rettangolo è sempre sembrato qualcosa di magico. Nulla farebbe immaginare a priori una relazione così semplice, e si può perfettamente capire come per più di due millenni si sia stati convinti che la geometria euclidea fosse quella "vera", visto che dava un risultato così bello e semplice. (Nelle geometrie di Lobacevskij e Riemann le cose non sono così semplici, perché c'è sempre un fattore correttivo... ma questa è un'altra storia). Il teorema di Pitagora è stato dimostrato in centinaia di modi diversi, persino da un futuro presidente degli Stati Uniti d'America: Garfield, che però fu assassinato pochi mesi dopo l'elezione il che potrebbe dare ragione a chi pensa che la matematica faccia male. Il triangolo di lati 3, 4 e 5 era però già noto agli egizi, e forse è il primo esempio pratico di geometria noto all'umanità.
Quasi la stessa magia, almeno per me, è stato scoprire che ce n'erano infiniti, di triangoli rettangoli con i lati interi: a parte quelli ovvi di lati multipli della terna (3,4,5) ci sono ad esempio quelli definiti da (5,12,13), (7,24,25), (8,15,17). La cosa è abbastanza inverosimile, se si pensa che l'ultimo teorema di Fermat afferma che con i cubi o le potenze di ordine maggiore non si riesce mai ad avere una cosa del genere, a meno di scrivere 0n + 1n = 1n. Da buon matematico, a questo punto, la prima domanda che mi faccio è "Ma c'è una formula per ricavare tutte le terne pitagoriche, come vengono detti i numeri che formano i lati di un triangolo rettangolo?" Per le prime tre terne è abbastanza facile ricavare una formula generale che le rappresenti: il cateto più corto è un numero dispari, diciamo 2n+1; il cateto più lungo è n(2n+1)+n; l'ipotenusa è uno in più del cateto piu lungo. Ma il quarto triangolo è fuori da questo schema, e ci vuole una formula diversa; e chissà quanti altri triangoli "sostanzialmente diversi" ci sono!
A dire il vero, esiste una formula che permette di ottenere tutte le terne pitagoriche, e tale formula è nota da secoli, e sapevo dell'esistenza di tale formula. Quello che non sapevo è che per ricavarla non occorre affatto chissà quale abilità matematica; se uno sa qual è il trucco giusto, ci arriva con le conoscenze della terza media. Rubo così la dimostrazione da Algebra ricreativa di Yakov Perelman (libro che consiglio, tra l'altro), sperando che vi possa interessare.
Iniziamo a dire che a noi interessa trovare le terne pitagoriche "base", cioè di numeri senza alcun fattor comune: a partire da quelle non ci sono problemi a moltiplicare i tre valori per un qualsiasi intero e ottenerne un'altra. Questo significa che se (a,b,c) è la nostra terna, dove a e b sono i cateti e c l'ipotenusa, allora possiamo assumere che i tre numeri non sono tutti pari. Limitandoci ad a e b, non possono essere entrambi pari, visto che in questo caso lo sarebbe anche c; ma non possono nemmeno essere entrambi dispari. Se infatti a=2h+1 e b=2k+1, allora c2 = a2+b2 = 4(h2 + k2 + hk) + 2. Peccato che questo valore non sia multiplo di 4, mentre il quadrato di un numero pari lo è. Insomma, in una terna pitagorica base ipotenusa e un cateto sono dispari, mentre l'altro cateto è pari: per fissare le idee, supponiamo che quest'ultimo cateto sia b.
Adesso arriva il colpo di genio. Invece che scrivere a2 + b2 = c2, scriviamo a2 = c2 - b2 = (c+b)(c-b). I due numeri c+b e c-b sono necessariamente primi tra loro! Se infatti avessero un fattore comune k, questo sarebbe un fattore comune alla loro somma 2c, alla loro differenza 2b e al loro prodotto a2. Però k non può essere multiplo di 2 (ricordo che a è dispari) e non può essere nessun altro valore, perché altrimenti potremmo dividere a, b e c per k contro l'ipotesi di avere una terna pitagorica base.
Ma se (c+b)(c-b) è un quadrato e (c+b) e (c-b) sono dispari e primi tra loro, devono essere entrambi dei quadrati di numeri dispari. Diciamo che (c+b)=m2 e (c-b)=n2. Risolvendo per b, c ed a otteniamo
a = mn
b = (m2 - n2)/2
c = (m2 + n2)/2
Fine del nostro lavoro. Ciascuna terna così ottenuta è pitagorica; e scegliendo a nostro piacere i valori di m ed n (purché entrambi dispari, primi tra loro e con m>n) possiamo ottenere tutte le terne pitagoriche base. Per la cronaca, la mia formula iniziale si ottiene da quella generica quando n=1.
Un'ultima cosa. Dopo questa bella dimostrazione, Perelman afferma - senza provarlo - che nelle terne pitagoriche c'è sempre un cateto multiplo di 3, uno multiplo di 4, e un lato (cateto o ipotenusa) multiplo di 5. Le dimostrazioni non sono difficili: almeno io le ho fatte a mente mentre sollevavo pesi in palestra, il che la dice lunga su quanto mi alleni con scrupolo e coscienza. Se qualcuno di voi vuole cimentarsi per conto proprio, eviti di andare a leggere la seconda parte. Posso solo dire che anche in questo caso le conoscenze necessarie non superano quelle della scuola media, e che un liceale dovrebbe farcela a trovarle. Buon divertimento :-)
©
Maurizio Codogno, 16 dicembre 2008
torna a .mau. —
matematica —
light